MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddfnlem Structured version   Visualization version   GIF version

Theorem imasaddfnlem 16800
Description: The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddflem.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Assertion
Ref Expression
imasaddfnlem (𝜑 Fn (𝐵 × 𝐵))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem imasaddfnlem
Dummy variables 𝑤 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5355 . . . . . . . . 9 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V
2 fvex 6682 . . . . . . . . 9 (𝐹‘(𝑝 · 𝑞)) ∈ V
31, 2relsnop 5677 . . . . . . . 8 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
43rgenw 3150 . . . . . . 7 𝑞𝑉 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
5 reliun 5688 . . . . . . 7 (Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∀𝑞𝑉 Rel {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
64, 5mpbir 233 . . . . . 6 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
76rgenw 3150 . . . . 5 𝑝𝑉 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
8 reliun 5688 . . . . 5 (Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∀𝑝𝑉 Rel 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
97, 8mpbir 233 . . . 4 Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}
10 imasaddflem.a . . . . 5 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
1110releqd 5652 . . . 4 (𝜑 → (Rel ↔ Rel 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
129, 11mpbiri 260 . . 3 (𝜑 → Rel )
13 imasaddf.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑉onto𝐵)
14 fof 6589 . . . . . . . . . . . . . . . 16 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
1513, 14syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑉𝐵)
16 ffvelrn 6848 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉𝐵𝑝𝑉) → (𝐹𝑝) ∈ 𝐵)
17 ffvelrn 6848 . . . . . . . . . . . . . . . 16 ((𝐹:𝑉𝐵𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
1816, 17anim12dan 620 . . . . . . . . . . . . . . 15 ((𝐹:𝑉𝐵 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
1915, 18sylan 582 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵))
20 opelxpi 5591 . . . . . . . . . . . . . 14 (((𝐹𝑝) ∈ 𝐵 ∧ (𝐹𝑞) ∈ 𝐵) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
2119, 20syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵))
22 opelxpi 5591 . . . . . . . . . . . . 13 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ (𝐵 × 𝐵) ∧ (𝐹‘(𝑝 · 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × V))
2321, 2, 22sylancl 588 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ((𝐵 × 𝐵) × V))
2423snssd 4741 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2524anassrs 470 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2625iunssd 4973 . . . . . . . . 9 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2726iunssd 4973 . . . . . . . 8 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ((𝐵 × 𝐵) × V))
2810, 27eqsstrd 4004 . . . . . . 7 (𝜑 ⊆ ((𝐵 × 𝐵) × V))
29 dmss 5770 . . . . . . 7 ( ⊆ ((𝐵 × 𝐵) × V) → dom ⊆ dom ((𝐵 × 𝐵) × V))
3028, 29syl 17 . . . . . 6 (𝜑 → dom ⊆ dom ((𝐵 × 𝐵) × V))
31 vn0 4303 . . . . . . 7 V ≠ ∅
32 dmxp 5798 . . . . . . 7 (V ≠ ∅ → dom ((𝐵 × 𝐵) × V) = (𝐵 × 𝐵))
3331, 32ax-mp 5 . . . . . 6 dom ((𝐵 × 𝐵) × V) = (𝐵 × 𝐵)
3430, 33sseqtrdi 4016 . . . . 5 (𝜑 → dom ⊆ (𝐵 × 𝐵))
35 forn 6592 . . . . . . 7 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
3613, 35syl 17 . . . . . 6 (𝜑 → ran 𝐹 = 𝐵)
3736sqxpeqd 5586 . . . . 5 (𝜑 → (ran 𝐹 × ran 𝐹) = (𝐵 × 𝐵))
3834, 37sseqtrrd 4007 . . . 4 (𝜑 → dom ⊆ (ran 𝐹 × ran 𝐹))
3910eleq2d 2898 . . . . . . . . . . . . 13 (𝜑 → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
4039adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
41 df-br 5066 . . . . . . . . . . . 12 (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤 ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ )
42 eliun 4922 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑝𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
43 eliun 4922 . . . . . . . . . . . . . 14 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4443rexbii 3247 . . . . . . . . . . . . 13 (∃𝑝𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4542, 44bitr2i 278 . . . . . . . . . . . 12 (∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
4640, 41, 453bitr4g 316 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤 ↔ ∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}))
47 opex 5355 . . . . . . . . . . . . . . 15 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ V
4847elsn 4581 . . . . . . . . . . . . . 14 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ↔ ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩)
49 opex 5355 . . . . . . . . . . . . . . . 16 ⟨(𝐹𝑎), (𝐹𝑏)⟩ ∈ V
50 vex 3497 . . . . . . . . . . . . . . . 16 𝑤 ∈ V
5149, 50opth 5367 . . . . . . . . . . . . . . 15 (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ↔ (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∧ 𝑤 = (𝐹‘(𝑝 · 𝑞))))
52 fvex 6682 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑎) ∈ V
53 fvex 6682 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑏) ∈ V
5452, 53opth 5367 . . . . . . . . . . . . . . . . . 18 (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ↔ ((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)))
55 imasaddf.e . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
5654, 55syl5bi 244 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
57 eqeq2 2833 . . . . . . . . . . . . . . . . . 18 ((𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)) → (𝑤 = (𝐹‘(𝑎 · 𝑏)) ↔ 𝑤 = (𝐹‘(𝑝 · 𝑞))))
5857biimprd 250 . . . . . . . . . . . . . . . . 17 ((𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)) → (𝑤 = (𝐹‘(𝑝 · 𝑞)) → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
5956, 58syl6 35 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ → (𝑤 = (𝐹‘(𝑝 · 𝑞)) → 𝑤 = (𝐹‘(𝑎 · 𝑏)))))
6059impd 413 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((⟨(𝐹𝑎), (𝐹𝑏)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∧ 𝑤 = (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6151, 60syl5bi 244 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6248, 61syl5bi 244 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
63623expa 1114 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑝𝑉𝑞𝑉)) → (⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6463rexlimdvva 3294 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (∃𝑝𝑉𝑞𝑉 ⟨⟨(𝐹𝑎), (𝐹𝑏)⟩, 𝑤⟩ ∈ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑤 = (𝐹‘(𝑎 · 𝑏))))
6546, 64sylbid 242 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))))
6665alrimiv 1924 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∀𝑤(⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))))
67 mo2icl 3704 . . . . . . . . 9 (∀𝑤(⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤𝑤 = (𝐹‘(𝑎 · 𝑏))) → ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
6866, 67syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
6968ralrimivva 3191 . . . . . . 7 (𝜑 → ∀𝑎𝑉𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤)
70 fofn 6591 . . . . . . . . . 10 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
7113, 70syl 17 . . . . . . . . 9 (𝜑𝐹 Fn 𝑉)
72 opeq2 4803 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑏) → ⟨(𝐹𝑎), 𝑧⟩ = ⟨(𝐹𝑎), (𝐹𝑏)⟩)
7372breq1d 5075 . . . . . . . . . . 11 (𝑧 = (𝐹𝑏) → (⟨(𝐹𝑎), 𝑧 𝑤 ↔ ⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7473mobidv 2629 . . . . . . . . . 10 (𝑧 = (𝐹𝑏) → (∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7574ralrn 6853 . . . . . . . . 9 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7671, 75syl 17 . . . . . . . 8 (𝜑 → (∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7776ralbidv 3197 . . . . . . 7 (𝜑 → (∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤 ↔ ∀𝑎𝑉𝑏𝑉 ∃*𝑤⟨(𝐹𝑎), (𝐹𝑏)⟩ 𝑤))
7869, 77mpbird 259 . . . . . 6 (𝜑 → ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤)
79 opeq1 4802 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ⟨𝑦, 𝑧⟩ = ⟨(𝐹𝑎), 𝑧⟩)
8079breq1d 5075 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (⟨𝑦, 𝑧 𝑤 ↔ ⟨(𝐹𝑎), 𝑧 𝑤))
8180mobidv 2629 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∃*𝑤𝑦, 𝑧 𝑤 ↔ ∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8281ralbidv 3197 . . . . . . . 8 (𝑦 = (𝐹𝑎) → (∀𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8382ralrn 6853 . . . . . . 7 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8471, 83syl 17 . . . . . 6 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤 ↔ ∀𝑎𝑉𝑧 ∈ ran 𝐹∃*𝑤⟨(𝐹𝑎), 𝑧 𝑤))
8578, 84mpbird 259 . . . . 5 (𝜑 → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤)
86 breq1 5068 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 𝑤 ↔ ⟨𝑦, 𝑧 𝑤))
8786mobidv 2629 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → (∃*𝑤 𝑥 𝑤 ↔ ∃*𝑤𝑦, 𝑧 𝑤))
8887ralxp 5711 . . . . 5 (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤 ↔ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹∃*𝑤𝑦, 𝑧 𝑤)
8985, 88sylibr 236 . . . 4 (𝜑 → ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤)
90 ssralv 4032 . . . 4 (dom ⊆ (ran 𝐹 × ran 𝐹) → (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)∃*𝑤 𝑥 𝑤 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
9138, 89, 90sylc 65 . . 3 (𝜑 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤)
92 dffun7 6381 . . 3 (Fun ↔ (Rel ∧ ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
9312, 91, 92sylanbrc 585 . 2 (𝜑 → Fun )
94 eqimss2 4023 . . . . . . . . . . 11 ( = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
9510, 94syl 17 . . . . . . . . . 10 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
96 iunss 4968 . . . . . . . . . 10 ( 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ↔ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
9795, 96sylib 220 . . . . . . . . 9 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
98 iunss 4968 . . . . . . . . . . 11 ( 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ ↔ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
99 opex 5355 . . . . . . . . . . . . . 14 ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ V
10099snss 4717 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ ↔ {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ )
1011, 2opeldm 5775 . . . . . . . . . . . . 13 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ ∈ → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
102100, 101sylbir 237 . . . . . . . . . . . 12 ({⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
103102ralimi 3160 . . . . . . . . . . 11 (∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
10498, 103sylbi 219 . . . . . . . . . 10 ( 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
105104ralimi 3160 . . . . . . . . 9 (∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ⊆ → ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
10697, 105syl 17 . . . . . . . 8 (𝜑 → ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom )
107 opeq2 4803 . . . . . . . . . . . 12 (𝑧 = (𝐹𝑞) → ⟨(𝐹𝑝), 𝑧⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
108107eleq1d 2897 . . . . . . . . . . 11 (𝑧 = (𝐹𝑞) → (⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
109108ralrn 6853 . . . . . . . . . 10 (𝐹 Fn 𝑉 → (∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
11071, 109syl 17 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
111110ralbidv 3197 . . . . . . . 8 (𝜑 → (∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑞𝑉 ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ dom ))
112106, 111mpbird 259 . . . . . . 7 (𝜑 → ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom )
113 opeq1 4802 . . . . . . . . . . 11 (𝑦 = (𝐹𝑝) → ⟨𝑦, 𝑧⟩ = ⟨(𝐹𝑝), 𝑧⟩)
114113eleq1d 2897 . . . . . . . . . 10 (𝑦 = (𝐹𝑝) → (⟨𝑦, 𝑧⟩ ∈ dom ↔ ⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
115114ralbidv 3197 . . . . . . . . 9 (𝑦 = (𝐹𝑝) → (∀𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
116115ralrn 6853 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
11771, 116syl 17 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom ↔ ∀𝑝𝑉𝑧 ∈ ran 𝐹⟨(𝐹𝑝), 𝑧⟩ ∈ dom ))
118112, 117mpbird 259 . . . . . 6 (𝜑 → ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom )
119 eleq1 2900 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ dom ↔ ⟨𝑦, 𝑧⟩ ∈ dom ))
120119ralxp 5711 . . . . . 6 (∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom ↔ ∀𝑦 ∈ ran 𝐹𝑧 ∈ ran 𝐹𝑦, 𝑧⟩ ∈ dom )
121118, 120sylibr 236 . . . . 5 (𝜑 → ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom )
122 dfss3 3955 . . . . 5 ((ran 𝐹 × ran 𝐹) ⊆ dom ↔ ∀𝑥 ∈ (ran 𝐹 × ran 𝐹)𝑥 ∈ dom )
123121, 122sylibr 236 . . . 4 (𝜑 → (ran 𝐹 × ran 𝐹) ⊆ dom )
12437, 123eqsstrrd 4005 . . 3 (𝜑 → (𝐵 × 𝐵) ⊆ dom )
12534, 124eqssd 3983 . 2 (𝜑 → dom = (𝐵 × 𝐵))
126 df-fn 6357 . 2 ( Fn (𝐵 × 𝐵) ↔ (Fun ∧ dom = (𝐵 × 𝐵)))
12793, 125, 126sylanbrc 585 1 (𝜑 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1531   = wceq 1533  wcel 2110  ∃*wmo 2616  wne 3016  wral 3138  wrex 3139  Vcvv 3494  wss 3935  c0 4290  {csn 4566  cop 4572   ciun 4918   class class class wbr 5065   × cxp 5552  dom cdm 5554  ran crn 5555  Rel wrel 5559  Fun wfun 6348   Fn wfn 6349  wf 6350  ontowfo 6352  cfv 6354  (class class class)co 7155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fo 6360  df-fv 6362
This theorem is referenced by:  imasaddvallem  16801  imasaddflem  16802  imasaddfn  16803  imasmulfn  16806
  Copyright terms: Public domain W3C validator