MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasaddvallem Structured version   Visualization version   GIF version

Theorem imasaddvallem 15961
Description: The operation of an image structure is defined to distribute over the mapping function. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddflem.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Assertion
Ref Expression
imasaddvallem ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Distinct variable groups:   𝑞,𝑝,𝐵   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝑋,𝑝   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   𝑌,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   · (𝑎,𝑏)   𝑋(𝑞,𝑎,𝑏)   𝑌(𝑎,𝑏)

Proof of Theorem imasaddvallem
StepHypRef Expression
1 df-ov 6530 . 2 ((𝐹𝑋) (𝐹𝑌)) = ( ‘⟨(𝐹𝑋), (𝐹𝑌)⟩)
2 imasaddf.f . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
3 imasaddf.e . . . . . 6 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
4 imasaddflem.a . . . . . 6 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
52, 3, 4imasaddfnlem 15960 . . . . 5 (𝜑 Fn (𝐵 × 𝐵))
6 fnfun 5888 . . . . 5 ( Fn (𝐵 × 𝐵) → Fun )
75, 6syl 17 . . . 4 (𝜑 → Fun )
873ad2ant1 1075 . . 3 ((𝜑𝑋𝑉𝑌𝑉) → Fun )
9 fveq2 6088 . . . . . . . . . . 11 (𝑝 = 𝑋 → (𝐹𝑝) = (𝐹𝑋))
109opeq1d 4341 . . . . . . . . . 10 (𝑝 = 𝑋 → ⟨(𝐹𝑝), (𝐹𝑌)⟩ = ⟨(𝐹𝑋), (𝐹𝑌)⟩)
11 oveq1 6534 . . . . . . . . . . 11 (𝑝 = 𝑋 → (𝑝 · 𝑌) = (𝑋 · 𝑌))
1211fveq2d 6092 . . . . . . . . . 10 (𝑝 = 𝑋 → (𝐹‘(𝑝 · 𝑌)) = (𝐹‘(𝑋 · 𝑌)))
1310, 12opeq12d 4343 . . . . . . . . 9 (𝑝 = 𝑋 → ⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩ = ⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩)
1413sneqd 4137 . . . . . . . 8 (𝑝 = 𝑋 → {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} = {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩})
1514ssiun2s 4495 . . . . . . 7 (𝑋𝑉 → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩})
16153ad2ant2 1076 . . . . . 6 ((𝜑𝑋𝑉𝑌𝑉) → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩})
17 fveq2 6088 . . . . . . . . . . . . 13 (𝑞 = 𝑌 → (𝐹𝑞) = (𝐹𝑌))
1817opeq2d 4342 . . . . . . . . . . . 12 (𝑞 = 𝑌 → ⟨(𝐹𝑝), (𝐹𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑌)⟩)
19 oveq2 6535 . . . . . . . . . . . . 13 (𝑞 = 𝑌 → (𝑝 · 𝑞) = (𝑝 · 𝑌))
2019fveq2d 6092 . . . . . . . . . . . 12 (𝑞 = 𝑌 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑌)))
2118, 20opeq12d 4343 . . . . . . . . . . 11 (𝑞 = 𝑌 → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩)
2221sneqd 4137 . . . . . . . . . 10 (𝑞 = 𝑌 → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩})
2322ssiun2s 4495 . . . . . . . . 9 (𝑌𝑉 → {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2423ralrimivw 2950 . . . . . . . 8 (𝑌𝑉 → ∀𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
25 ss2iun 4467 . . . . . . . 8 (∀𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} → 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2624, 25syl 17 . . . . . . 7 (𝑌𝑉 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
27263ad2ant3 1077 . . . . . 6 ((𝜑𝑋𝑉𝑌𝑉) → 𝑝𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑌)⟩, (𝐹‘(𝑝 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2816, 27sstrd 3578 . . . . 5 ((𝜑𝑋𝑉𝑌𝑉) → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
2943ad2ant1 1075 . . . . 5 ((𝜑𝑋𝑉𝑌𝑉) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
3028, 29sseqtr4d 3605 . . . 4 ((𝜑𝑋𝑉𝑌𝑉) → {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ )
31 opex 4853 . . . . 5 ⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ V
3231snss 4259 . . . 4 (⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ ↔ {⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩} ⊆ )
3330, 32sylibr 223 . . 3 ((𝜑𝑋𝑉𝑌𝑉) → ⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ )
34 funopfv 6130 . . 3 (Fun → (⟨⟨(𝐹𝑋), (𝐹𝑌)⟩, (𝐹‘(𝑋 · 𝑌))⟩ ∈ → ( ‘⟨(𝐹𝑋), (𝐹𝑌)⟩) = (𝐹‘(𝑋 · 𝑌))))
358, 33, 34sylc 63 . 2 ((𝜑𝑋𝑉𝑌𝑉) → ( ‘⟨(𝐹𝑋), (𝐹𝑌)⟩) = (𝐹‘(𝑋 · 𝑌)))
361, 35syl5eq 2656 1 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wss 3540  {csn 4125  cop 4131   ciun 4450   × cxp 5026  Fun wfun 5784   Fn wfn 5785  ontowfo 5788  cfv 5790  (class class class)co 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-fo 5796  df-fv 5798  df-ov 6530
This theorem is referenced by:  imasaddval  15964  imasmulval  15967  qusaddvallem  15983
  Copyright terms: Public domain W3C validator