MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasdsval2 Structured version   Visualization version   GIF version

Theorem imasdsval2 16398
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasds.e 𝐸 = (dist‘𝑅)
imasds.d 𝐷 = (dist‘𝑈)
imasdsval.x (𝜑𝑋𝐵)
imasdsval.y (𝜑𝑌𝐵)
imasdsval.s 𝑆 = { ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))}
imasds.u 𝑇 = (𝐸 ↾ (𝑉 × 𝑉))
Assertion
Ref Expression
imasdsval2 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ))
Distinct variable groups:   𝑔,,𝑖,𝑛,𝐹   𝑅,𝑔,,𝑖,𝑛   𝜑,𝑔,,𝑖,𝑛   ,𝑋,𝑛   𝑆,𝑔   𝑔,𝑉,   ,𝑌,𝑛
Allowed substitution hints:   𝐵(𝑔,,𝑖,𝑛)   𝐷(𝑔,,𝑖,𝑛)   𝑆(,𝑖,𝑛)   𝑇(𝑔,,𝑖,𝑛)   𝑈(𝑔,,𝑖,𝑛)   𝐸(𝑔,,𝑖,𝑛)   𝑉(𝑖,𝑛)   𝑋(𝑔,𝑖)   𝑌(𝑔,𝑖)   𝑍(𝑔,,𝑖,𝑛)

Proof of Theorem imasdsval2
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasbas.f . . 3 (𝜑𝐹:𝑉onto𝐵)
4 imasbas.r . . 3 (𝜑𝑅𝑍)
5 imasds.e . . 3 𝐸 = (dist‘𝑅)
6 imasds.d . . 3 𝐷 = (dist‘𝑈)
7 imasdsval.x . . 3 (𝜑𝑋𝐵)
8 imasdsval.y . . 3 (𝜑𝑌𝐵)
9 imasdsval.s . . 3 𝑆 = { ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))}
101, 2, 3, 4, 5, 6, 7, 8, 9imasdsval 16397 . 2 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < ))
11 imasds.u . . . . . . . . . 10 𝑇 = (𝐸 ↾ (𝑉 × 𝑉))
1211coeq1i 5437 . . . . . . . . 9 (𝑇𝑔) = ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔)
13 ssrab2 3828 . . . . . . . . . . . 12 { ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ⊆ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛))
149, 13eqsstri 3776 . . . . . . . . . . 11 𝑆 ⊆ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛))
1514sseli 3740 . . . . . . . . . 10 (𝑔𝑆𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)))
16 elmapi 8047 . . . . . . . . . 10 (𝑔 ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) → 𝑔:(1...𝑛)⟶(𝑉 × 𝑉))
17 frn 6214 . . . . . . . . . 10 (𝑔:(1...𝑛)⟶(𝑉 × 𝑉) → ran 𝑔 ⊆ (𝑉 × 𝑉))
18 cores 5799 . . . . . . . . . 10 (ran 𝑔 ⊆ (𝑉 × 𝑉) → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸𝑔))
1915, 16, 17, 184syl 19 . . . . . . . . 9 (𝑔𝑆 → ((𝐸 ↾ (𝑉 × 𝑉)) ∘ 𝑔) = (𝐸𝑔))
2012, 19syl5eq 2806 . . . . . . . 8 (𝑔𝑆 → (𝑇𝑔) = (𝐸𝑔))
2120oveq2d 6830 . . . . . . 7 (𝑔𝑆 → (ℝ*𝑠 Σg (𝑇𝑔)) = (ℝ*𝑠 Σg (𝐸𝑔)))
2221mpteq2ia 4892 . . . . . 6 (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2322rneqi 5507 . . . . 5 ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2423a1i 11 . . . 4 (𝑛 ∈ ℕ → ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))))
2524iuneq2i 4691 . . 3 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))) = 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔)))
2625infeq1i 8551 . 2 inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )
2710, 26syl6eqr 2812 1 (𝜑 → (𝑋𝐷𝑌) = inf( 𝑛 ∈ ℕ ran (𝑔𝑆 ↦ (ℝ*𝑠 Σg (𝑇𝑔))), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1632  wcel 2139  wral 3050  {crab 3054  wss 3715   ciun 4672  cmpt 4881   × cxp 5264  ran crn 5267  cres 5268  ccom 5270  wf 6045  ontowfo 6047  cfv 6049  (class class class)co 6814  1st c1st 7332  2nd c2nd 7333  𝑚 cmap 8025  infcinf 8514  1c1 10149   + caddc 10151  *cxr 10285   < clt 10286  cmin 10478  cn 11232  ...cfz 12539  Basecbs 16079  distcds 16172   Σg cgsu 16323  *𝑠cxrs 16382  s cimas 16386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-imas 16390
This theorem is referenced by:  imasdsf1olem  22399
  Copyright terms: Public domain W3C validator