MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasleval Structured version   Visualization version   GIF version

Theorem imasleval 16817
Description: The value of the image structure's ordering when the order is compatible with the mapping function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasless.u (𝜑𝑈 = (𝐹s 𝑅))
imasless.v (𝜑𝑉 = (Base‘𝑅))
imasless.f (𝜑𝐹:𝑉onto𝐵)
imasless.r (𝜑𝑅𝑍)
imasless.l = (le‘𝑈)
imasleval.n 𝑁 = (le‘𝑅)
imasleval.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
Assertion
Ref Expression
imasleval ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))
Distinct variable groups:   𝑐,𝑑,   𝑎,𝑏,𝑐,𝑑,𝐹   𝑁,𝑎,𝑏,𝑐,𝑑   𝑉,𝑎,𝑏,𝑐,𝑑   𝑌,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑   𝑋,𝑐,𝑑
Allowed substitution hints:   𝐵(𝑎,𝑏,𝑐,𝑑)   𝑅(𝑎,𝑏,𝑐,𝑑)   𝑈(𝑎,𝑏,𝑐,𝑑)   (𝑎,𝑏)   𝑋(𝑎,𝑏)   𝑌(𝑎,𝑏,𝑐)   𝑍(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem imasleval
StepHypRef Expression
1 fveq2 6673 . . . . . . 7 (𝑐 = 𝑋 → (𝐹𝑐) = (𝐹𝑋))
21breq1d 5079 . . . . . 6 (𝑐 = 𝑋 → ((𝐹𝑐) (𝐹𝑑) ↔ (𝐹𝑋) (𝐹𝑑)))
3 breq1 5072 . . . . . 6 (𝑐 = 𝑋 → (𝑐𝑁𝑑𝑋𝑁𝑑))
42, 3bibi12d 348 . . . . 5 (𝑐 = 𝑋 → (((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑) ↔ ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑)))
54imbi2d 343 . . . 4 (𝑐 = 𝑋 → ((𝜑 → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑)) ↔ (𝜑 → ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑))))
6 fveq2 6673 . . . . . . 7 (𝑑 = 𝑌 → (𝐹𝑑) = (𝐹𝑌))
76breq2d 5081 . . . . . 6 (𝑑 = 𝑌 → ((𝐹𝑋) (𝐹𝑑) ↔ (𝐹𝑋) (𝐹𝑌)))
8 breq2 5073 . . . . . 6 (𝑑 = 𝑌 → (𝑋𝑁𝑑𝑋𝑁𝑌))
97, 8bibi12d 348 . . . . 5 (𝑑 = 𝑌 → (((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑) ↔ ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
109imbi2d 343 . . . 4 (𝑑 = 𝑌 → ((𝜑 → ((𝐹𝑋) (𝐹𝑑) ↔ 𝑋𝑁𝑑)) ↔ (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))))
11 imasless.f . . . . . . . . . . . 12 (𝜑𝐹:𝑉onto𝐵)
12 fofn 6595 . . . . . . . . . . . 12 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
1311, 12syl 17 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑉)
1413adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝐹 Fn 𝑉)
15 fndm 6458 . . . . . . . . . 10 (𝐹 Fn 𝑉 → dom 𝐹 = 𝑉)
1614, 15syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → dom 𝐹 = 𝑉)
1716rexeqdv 3419 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
18 fnbrfvb 6721 . . . . . . . . . . . 12 ((𝐹 Fn 𝑉𝑎𝑉) → ((𝐹𝑎) = (𝐹𝑐) ↔ 𝑎𝐹(𝐹𝑐)))
1914, 18sylan 582 . . . . . . . . . . 11 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → ((𝐹𝑎) = (𝐹𝑐) ↔ 𝑎𝐹(𝐹𝑐)))
2019anbi1d 631 . . . . . . . . . 10 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
21 ancom 463 . . . . . . . . . . . . . . 15 ((𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏))
22 vex 3500 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ V
23 fvex 6686 . . . . . . . . . . . . . . . . . 18 (𝐹𝑑) ∈ V
2422, 23breldm 5780 . . . . . . . . . . . . . . . . 17 (𝑏𝐹(𝐹𝑑) → 𝑏 ∈ dom 𝐹)
2524adantr 483 . . . . . . . . . . . . . . . 16 ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) → 𝑏 ∈ dom 𝐹)
2625pm4.71ri 563 . . . . . . . . . . . . . . 15 ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
2721, 26bitri 277 . . . . . . . . . . . . . 14 ((𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ (𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
2827exbii 1847 . . . . . . . . . . . . 13 (∃𝑏(𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
29 vex 3500 . . . . . . . . . . . . . 14 𝑎 ∈ V
3029, 23brco 5744 . . . . . . . . . . . . 13 (𝑎(𝐹𝑁)(𝐹𝑑) ↔ ∃𝑏(𝑎𝑁𝑏𝑏𝐹(𝐹𝑑)))
31 df-rex 3147 . . . . . . . . . . . . 13 (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏(𝑏 ∈ dom 𝐹 ∧ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
3228, 30, 313bitr4i 305 . . . . . . . . . . . 12 (𝑎(𝐹𝑁)(𝐹𝑑) ↔ ∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏))
3314ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → 𝐹 Fn 𝑉)
34 fnbrfvb 6721 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑉𝑏𝑉) → ((𝐹𝑏) = (𝐹𝑑) ↔ 𝑏𝐹(𝐹𝑑)))
3533, 34sylan 582 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → ((𝐹𝑏) = (𝐹𝑑) ↔ 𝑏𝐹(𝐹𝑑)))
3635anbi1d 631 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
37 imasleval.e . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
38373expa 1114 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑐𝑉𝑑𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
3938an32s 650 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ (𝑎𝑉𝑏𝑉)) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
4039anassrs 470 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑)))
4140impl 458 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ (𝐹𝑏) = (𝐹𝑑)) → (𝑎𝑁𝑏𝑐𝑁𝑑))
4241pm5.32da 581 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ 𝑏𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4342an32s 650 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → (((𝐹𝑏) = (𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4436, 43bitr3d 283 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) ∧ 𝑏𝑉) → ((𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4544rexbidva 3299 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
46 r19.41v 3350 . . . . . . . . . . . . . 14 (∃𝑏𝑉 ((𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑) ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑))
4745, 46syl6bb 289 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
4816rexeqdv 3419 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
4948ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ ∃𝑏𝑉 (𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏)))
50 simprr 771 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝑑𝑉)
51 eqid 2824 . . . . . . . . . . . . . . . 16 (𝐹𝑑) = (𝐹𝑑)
52 fveqeq2 6682 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑑 → ((𝐹𝑏) = (𝐹𝑑) ↔ (𝐹𝑑) = (𝐹𝑑)))
5352rspcev 3626 . . . . . . . . . . . . . . . 16 ((𝑑𝑉 ∧ (𝐹𝑑) = (𝐹𝑑)) → ∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑))
5450, 51, 53sylancl 588 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑))
5554biantrurd 535 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
5655ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (𝑐𝑁𝑑 ↔ (∃𝑏𝑉 (𝐹𝑏) = (𝐹𝑑) ∧ 𝑐𝑁𝑑)))
5747, 49, 563bitr4d 313 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (∃𝑏 ∈ dom 𝐹(𝑏𝐹(𝐹𝑑) ∧ 𝑎𝑁𝑏) ↔ 𝑐𝑁𝑑))
5832, 57syl5bb 285 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) ∧ (𝐹𝑎) = (𝐹𝑐)) → (𝑎(𝐹𝑁)(𝐹𝑑) ↔ 𝑐𝑁𝑑))
5958pm5.32da 581 . . . . . . . . . 10 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → (((𝐹𝑎) = (𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6020, 59bitr3d 283 . . . . . . . . 9 (((𝜑 ∧ (𝑐𝑉𝑑𝑉)) ∧ 𝑎𝑉) → ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6160rexbidva 3299 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎𝑉 (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
6217, 61bitrd 281 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
63 fvex 6686 . . . . . . . . . . . 12 (𝐹𝑐) ∈ V
6463, 29brcnv 5756 . . . . . . . . . . 11 ((𝐹𝑐)𝐹𝑎𝑎𝐹(𝐹𝑐))
6564anbi1i 625 . . . . . . . . . 10 (((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)))
6629, 63breldm 5780 . . . . . . . . . . . 12 (𝑎𝐹(𝐹𝑐) → 𝑎 ∈ dom 𝐹)
6766adantr 483 . . . . . . . . . . 11 ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) → 𝑎 ∈ dom 𝐹)
6867pm4.71ri 563 . . . . . . . . . 10 ((𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
6965, 68bitri 277 . . . . . . . . 9 (((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7069exbii 1847 . . . . . . . 8 (∃𝑎((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7163, 23brco 5744 . . . . . . . 8 ((𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑) ↔ ∃𝑎((𝐹𝑐)𝐹𝑎𝑎(𝐹𝑁)(𝐹𝑑)))
72 df-rex 3147 . . . . . . . 8 (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ ∃𝑎(𝑎 ∈ dom 𝐹 ∧ (𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑))))
7370, 71, 723bitr4ri 306 . . . . . . 7 (∃𝑎 ∈ dom 𝐹(𝑎𝐹(𝐹𝑐) ∧ 𝑎(𝐹𝑁)(𝐹𝑑)) ↔ (𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑))
74 r19.41v 3350 . . . . . . 7 (∃𝑎𝑉 ((𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑) ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑))
7562, 73, 743bitr3g 315 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑) ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
76 imasless.u . . . . . . . . 9 (𝜑𝑈 = (𝐹s 𝑅))
77 imasless.v . . . . . . . . 9 (𝜑𝑉 = (Base‘𝑅))
78 imasless.r . . . . . . . . 9 (𝜑𝑅𝑍)
79 imasleval.n . . . . . . . . 9 𝑁 = (le‘𝑅)
80 imasless.l . . . . . . . . 9 = (le‘𝑈)
8176, 77, 11, 78, 79, 80imasle 16799 . . . . . . . 8 (𝜑 = ((𝐹𝑁) ∘ 𝐹))
8281adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → = ((𝐹𝑁) ∘ 𝐹))
8382breqd 5080 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) (𝐹𝑑) ↔ (𝐹𝑐)((𝐹𝑁) ∘ 𝐹)(𝐹𝑑)))
84 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → 𝑐𝑉)
85 eqid 2824 . . . . . . . 8 (𝐹𝑐) = (𝐹𝑐)
86 fveqeq2 6682 . . . . . . . . 9 (𝑎 = 𝑐 → ((𝐹𝑎) = (𝐹𝑐) ↔ (𝐹𝑐) = (𝐹𝑐)))
8786rspcev 3626 . . . . . . . 8 ((𝑐𝑉 ∧ (𝐹𝑐) = (𝐹𝑐)) → ∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐))
8884, 85, 87sylancl 588 . . . . . . 7 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐))
8988biantrurd 535 . . . . . 6 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → (𝑐𝑁𝑑 ↔ (∃𝑎𝑉 (𝐹𝑎) = (𝐹𝑐) ∧ 𝑐𝑁𝑑)))
9075, 83, 893bitr4d 313 . . . . 5 ((𝜑 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑))
9190expcom 416 . . . 4 ((𝑐𝑉𝑑𝑉) → (𝜑 → ((𝐹𝑐) (𝐹𝑑) ↔ 𝑐𝑁𝑑)))
925, 10, 91vtocl2ga 3578 . . 3 ((𝑋𝑉𝑌𝑉) → (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
9392com12 32 . 2 (𝜑 → ((𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌)))
94933impib 1112 1 ((𝜑𝑋𝑉𝑌𝑉) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋𝑁𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wex 1779  wcel 2113  wrex 3142   class class class wbr 5069  ccnv 5557  dom cdm 5558  ccom 5562   Fn wfn 6353  ontowfo 6356  cfv 6358  (class class class)co 7159  Basecbs 16486  lecple 16575  s cimas 16780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-imas 16784
This theorem is referenced by:  xpsle  16855
  Copyright terms: Public domain W3C validator