Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasmndf1 Structured version   Visualization version   GIF version

Theorem imasmndf1 17250
 Description: The image of a monoid under an injection is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasmndf1.u 𝑈 = (𝐹s 𝑅)
imasmndf1.v 𝑉 = (Base‘𝑅)
Assertion
Ref Expression
imasmndf1 ((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) → 𝑈 ∈ Mnd)

Proof of Theorem imasmndf1
Dummy variables 𝑎 𝑏 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasmndf1.u . . . 4 𝑈 = (𝐹s 𝑅)
21a1i 11 . . 3 ((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) → 𝑈 = (𝐹s 𝑅))
3 imasmndf1.v . . . 4 𝑉 = (Base‘𝑅)
43a1i 11 . . 3 ((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) → 𝑉 = (Base‘𝑅))
5 eqid 2621 . . 3 (+g𝑅) = (+g𝑅)
6 f1f1orn 6105 . . . . 5 (𝐹:𝑉1-1𝐵𝐹:𝑉1-1-onto→ran 𝐹)
76adantr 481 . . . 4 ((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) → 𝐹:𝑉1-1-onto→ran 𝐹)
8 f1ofo 6101 . . . 4 (𝐹:𝑉1-1-onto→ran 𝐹𝐹:𝑉onto→ran 𝐹)
97, 8syl 17 . . 3 ((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) → 𝐹:𝑉onto→ran 𝐹)
107f1ocpbl 16106 . . 3 (((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎(+g𝑅)𝑏)) = (𝐹‘(𝑝(+g𝑅)𝑞))))
11 simpr 477 . . 3 ((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) → 𝑅 ∈ Mnd)
12 eqid 2621 . . 3 (0g𝑅) = (0g𝑅)
132, 4, 5, 9, 10, 11, 12imasmnd 17249 . 2 ((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) → (𝑈 ∈ Mnd ∧ (𝐹‘(0g𝑅)) = (0g𝑈)))
1413simpld 475 1 ((𝐹:𝑉1-1𝐵𝑅 ∈ Mnd) → 𝑈 ∈ Mnd)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ran crn 5075  –1-1→wf1 5844  –onto→wfo 5845  –1-1-onto→wf1o 5846  ‘cfv 5847  (class class class)co 6604  Basecbs 15781  +gcplusg 15862  0gc0g 16021   “s cimas 16085  Mndcmnd 17215 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-0g 16023  df-imas 16089  df-mgm 17163  df-sgrp 17205  df-mnd 17216 This theorem is referenced by:  xpsmnd  17251
 Copyright terms: Public domain W3C validator