MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasmulr Structured version   Visualization version   GIF version

Theorem imasmulr 16225
Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasmulr.p · = (.r𝑅)
imasmulr.t = (.r𝑈)
Assertion
Ref Expression
imasmulr (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Distinct variable groups:   𝑞,𝑝,𝐹   𝑅,𝑝,𝑞   𝜑,𝑝,𝑞   𝑉,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   (𝑞,𝑝)   · (𝑞,𝑝)   𝑈(𝑞,𝑝)   𝑍(𝑞,𝑝)

Proof of Theorem imasmulr
Dummy variables 𝑔 𝑖 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2651 . . 3 (+g𝑅) = (+g𝑅)
4 imasmulr.p . . 3 · = (.r𝑅)
5 eqid 2651 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
6 eqid 2651 . . 3 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 eqid 2651 . . 3 ( ·𝑠𝑅) = ( ·𝑠𝑅)
8 eqid 2651 . . 3 (·𝑖𝑅) = (·𝑖𝑅)
9 eqid 2651 . . 3 (TopOpen‘𝑅) = (TopOpen‘𝑅)
10 eqid 2651 . . 3 (dist‘𝑅) = (dist‘𝑅)
11 eqid 2651 . . 3 (le‘𝑅) = (le‘𝑅)
12 imasbas.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
13 imasbas.r . . . 4 (𝜑𝑅𝑍)
14 eqid 2651 . . . 4 (+g𝑈) = (+g𝑈)
151, 2, 12, 13, 3, 14imasplusg 16224 . . 3 (𝜑 → (+g𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
16 eqidd 2652 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
17 eqidd 2652 . . 3 (𝜑 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞))) = 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞))))
18 eqidd 2652 . . 3 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩})
19 eqidd 2652 . . 3 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) = ((TopOpen‘𝑅) qTop 𝐹))
20 eqid 2651 . . . 4 (dist‘𝑈) = (dist‘𝑈)
211, 2, 12, 13, 10, 20imasds 16220 . . 3 (𝜑 → (dist‘𝑈) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑅) ∘ 𝑔))), ℝ*, < )))
22 eqidd 2652 . . 3 (𝜑 → ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) = ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹))
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19, 21, 22, 12, 13imasval 16218 . 2 (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
24 eqid 2651 . . 3 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
2524imasvalstr 16159 . 2 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) Struct ⟨1, 12⟩
26 mulrid 16044 . 2 .r = Slot (.r‘ndx)
27 snsstp3 4381 . . . 4 {⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ⊆ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩}
28 ssun1 3809 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩})
2927, 28sstri 3645 . . 3 {⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩})
30 ssun1 3809 . . 3 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3129, 30sstri 3645 . 2 {⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
32 fvex 6239 . . . 4 (Base‘𝑅) ∈ V
332, 32syl6eqel 2738 . . 3 (𝜑𝑉 ∈ V)
34 snex 4938 . . . . . 6 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ∈ V
3534rgenw 2953 . . . . 5 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ∈ V
36 iunexg 7185 . . . . 5 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ∈ V)
3733, 35, 36sylancl 695 . . . 4 (𝜑 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ∈ V)
3837ralrimivw 2996 . . 3 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ∈ V)
39 iunexg 7185 . . 3 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ∈ V)
4033, 38, 39syl2anc 694 . 2 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩} ∈ V)
41 imasmulr.t . 2 = (.r𝑈)
4223, 25, 26, 31, 40, 41strfv3 15955 1 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cun 3605  {csn 4210  {ctp 4214  cop 4216   ciun 4552  ccnv 5142  ccom 5147  ontowfo 5924  cfv 5926  (class class class)co 6690  cmpt2 6692  1c1 9975  2c2 11108  cdc 11531  ndxcnx 15901  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992  ·𝑖cip 15993  TopSetcts 15994  lecple 15995  distcds 15997  TopOpenctopn 16129   qTop cqtop 16210  s cimas 16211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-imas 16215
This theorem is referenced by:  imassca  16226  imasvsca  16227  imasip  16228  imastset  16229  imasle  16230  imasmulfn  16241  imasmulval  16242  imasmulf  16243  qusmulval  16262  qusmulf  16263
  Copyright terms: Public domain W3C validator