MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasring Structured version   Visualization version   GIF version

Theorem imasring 18391
Description: The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
imasring.u (𝜑𝑈 = (𝐹s 𝑅))
imasring.v (𝜑𝑉 = (Base‘𝑅))
imasring.p + = (+g𝑅)
imasring.t · = (.r𝑅)
imasring.o 1 = (1r𝑅)
imasring.f (𝜑𝐹:𝑉onto𝐵)
imasring.e1 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasring.e2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasring.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
imasring (𝜑 → (𝑈 ∈ Ring ∧ (𝐹1 ) = (1r𝑈)))
Distinct variable groups:   𝑞,𝑝, +   𝑎,𝑏,𝑝,𝑞,𝜑   𝑈,𝑎,𝑏,𝑝,𝑞   1 ,𝑝,𝑞   𝐵,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞   · ,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   1 (𝑎,𝑏)

Proof of Theorem imasring
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasring.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasring.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 imasring.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
4 imasring.r . . . 4 (𝜑𝑅 ∈ Ring)
51, 2, 3, 4imasbas 15944 . . 3 (𝜑𝐵 = (Base‘𝑈))
6 eqidd 2611 . . 3 (𝜑 → (+g𝑈) = (+g𝑈))
7 eqidd 2611 . . 3 (𝜑 → (.r𝑈) = (.r𝑈))
8 imasring.p . . . . . 6 + = (+g𝑅)
98a1i 11 . . . . 5 (𝜑+ = (+g𝑅))
10 imasring.e1 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
11 ringgrp 18324 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
124, 11syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
13 eqid 2610 . . . . 5 (0g𝑅) = (0g𝑅)
141, 2, 9, 3, 10, 12, 13imasgrp 17303 . . . 4 (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘(0g𝑅)) = (0g𝑈)))
1514simpld 474 . . 3 (𝜑𝑈 ∈ Grp)
16 imasring.e2 . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
17 imasring.t . . . . 5 · = (.r𝑅)
18 eqid 2610 . . . . 5 (.r𝑈) = (.r𝑈)
194adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑅 ∈ Ring)
20 simprl 790 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑢𝑉)
212adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑉 = (Base‘𝑅))
2220, 21eleqtrd 2690 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑢 ∈ (Base‘𝑅))
23 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑣𝑉)
2423, 21eleqtrd 2690 . . . . . . . 8 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → 𝑣 ∈ (Base‘𝑅))
25 eqid 2610 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
2625, 17ringcl 18333 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 · 𝑣) ∈ (Base‘𝑅))
2719, 22, 24, 26syl3anc 1318 . . . . . . 7 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 · 𝑣) ∈ (Base‘𝑅))
2827, 21eleqtrrd 2691 . . . . . 6 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 · 𝑣) ∈ 𝑉)
2928caovclg 6702 . . . . 5 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
303, 16, 1, 2, 4, 17, 18, 29imasmulf 15968 . . . 4 (𝜑 → (.r𝑈):(𝐵 × 𝐵)⟶𝐵)
31 fovrn 6680 . . . 4 (((.r𝑈):(𝐵 × 𝐵)⟶𝐵𝑢𝐵𝑣𝐵) → (𝑢(.r𝑈)𝑣) ∈ 𝐵)
3230, 31syl3an1 1351 . . 3 ((𝜑𝑢𝐵𝑣𝐵) → (𝑢(.r𝑈)𝑣) ∈ 𝐵)
33 forn 6016 . . . . . . . . . 10 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
343, 33syl 17 . . . . . . . . 9 (𝜑 → ran 𝐹 = 𝐵)
3534eleq2d 2673 . . . . . . . 8 (𝜑 → (𝑢 ∈ ran 𝐹𝑢𝐵))
3634eleq2d 2673 . . . . . . . 8 (𝜑 → (𝑣 ∈ ran 𝐹𝑣𝐵))
3734eleq2d 2673 . . . . . . . 8 (𝜑 → (𝑤 ∈ ran 𝐹𝑤𝐵))
3835, 36, 373anbi123d 1391 . . . . . . 7 (𝜑 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (𝑢𝐵𝑣𝐵𝑤𝐵)))
39 fofn 6015 . . . . . . . . 9 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
403, 39syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑉)
41 fvelrnb 6138 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
42 fvelrnb 6138 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑣 ∈ ran 𝐹 ↔ ∃𝑦𝑉 (𝐹𝑦) = 𝑣))
43 fvelrnb 6138 . . . . . . . . 9 (𝐹 Fn 𝑉 → (𝑤 ∈ ran 𝐹 ↔ ∃𝑧𝑉 (𝐹𝑧) = 𝑤))
4441, 42, 433anbi123d 1391 . . . . . . . 8 (𝐹 Fn 𝑉 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
4540, 44syl 17 . . . . . . 7 (𝜑 → ((𝑢 ∈ ran 𝐹𝑣 ∈ ran 𝐹𝑤 ∈ ran 𝐹) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
4638, 45bitr3d 269 . . . . . 6 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤)))
47 3reeanv 3087 . . . . . 6 (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) ↔ (∃𝑥𝑉 (𝐹𝑥) = 𝑢 ∧ ∃𝑦𝑉 (𝐹𝑦) = 𝑣 ∧ ∃𝑧𝑉 (𝐹𝑧) = 𝑤))
4846, 47syl6bbr 277 . . . . 5 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) ↔ ∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤)))
494adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Ring)
50 simp2 1055 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
5123ad2ant1 1075 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
5250, 51eleqtrd 2690 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
53523adant3r3 1268 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
54 simp3 1056 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
5554, 51eleqtrd 2690 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
56553adant3r3 1268 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
57 simpr3 1062 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
582adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
5957, 58eleqtrd 2690 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
6025, 17ringass 18336 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6149, 53, 56, 59, 60syl13anc 1320 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6261fveq2d 6092 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 · 𝑦) · 𝑧)) = (𝐹‘(𝑥 · (𝑦 · 𝑧))))
63 simpl 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝜑)
6428caovclg 6702 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
65643adantr3 1215 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
663, 16, 1, 2, 4, 17, 18imasmulval 15967 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉𝑧𝑉) → ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧)))
6763, 65, 57, 66syl3anc 1318 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 · 𝑦) · 𝑧)))
68 simpr1 1060 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥𝑉)
6928caovclg 6702 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦 · 𝑧) ∈ 𝑉)
70693adantr1 1213 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 · 𝑧) ∈ 𝑉)
713, 16, 1, 2, 4, 17, 18imasmulval 15967 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧))))
7263, 68, 70, 71syl3anc 1318 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘(𝑥 · (𝑦 · 𝑧))))
7362, 67, 723eqtr4d 2654 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))))
743, 16, 1, 2, 4, 17, 18imasmulval 15967 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉𝑦𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 · 𝑦)))
75743adant3r3 1268 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 · 𝑦)))
7675oveq1d 6542 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 · 𝑦))(.r𝑈)(𝐹𝑧)))
773, 16, 1, 2, 4, 17, 18imasmulval 15967 . . . . . . . . . . . . 13 ((𝜑𝑦𝑉𝑧𝑉) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 · 𝑧)))
78773adant3r1 1266 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 · 𝑧)))
7978oveq2d 6543 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 · 𝑧))))
8073, 76, 793eqtr4d 2654 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))))
81 simp1 1054 . . . . . . . . . . . . 13 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑥) = 𝑢)
82 simp2 1055 . . . . . . . . . . . . 13 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑦) = 𝑣)
8381, 82oveq12d 6545 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)(𝐹𝑦)) = (𝑢(.r𝑈)𝑣))
84 simp3 1056 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝐹𝑧) = 𝑤)
8583, 84oveq12d 6545 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤))
8682, 84oveq12d 6545 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = (𝑣(.r𝑈)𝑤))
8781, 86oveq12d 6545 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))
8885, 87eqeq12d 2625 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((((𝐹𝑥)(.r𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) ↔ ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
8980, 88syl5ibcom 234 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
90893exp2 1277 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))))))
9190imp32 448 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))))
9291rexlimdv 3012 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
9392rexlimdvva 3020 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
9448, 93sylbid 229 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤))))
9594imp 444 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(.r𝑈)𝑣)(.r𝑈)𝑤) = (𝑢(.r𝑈)(𝑣(.r𝑈)𝑤)))
9625, 8, 17ringdi 18338 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
9749, 53, 56, 59, 96syl13anc 1320 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
9897fveq2d 6092 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘(𝑥 · (𝑦 + 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧))))
9925, 8ringacl 18350 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢 + 𝑣) ∈ (Base‘𝑅))
10019, 22, 24, 99syl3anc 1318 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 + 𝑣) ∈ (Base‘𝑅))
101100, 21eleqtrrd 2691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢𝑉𝑣𝑉)) → (𝑢 + 𝑣) ∈ 𝑉)
102101caovclg 6702 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) ∈ 𝑉)
1031023adantr1 1213 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑦 + 𝑧) ∈ 𝑉)
1043, 16, 1, 2, 4, 17, 18imasmulval 15967 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉 ∧ (𝑦 + 𝑧) ∈ 𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧))))
10563, 68, 103, 104syl3anc 1318 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))) = (𝐹‘(𝑥 · (𝑦 + 𝑧))))
10628caovclg 6702 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑧𝑉)) → (𝑥 · 𝑧) ∈ 𝑉)
1071063adantr2 1214 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 · 𝑧) ∈ 𝑉)
108 eqid 2610 . . . . . . . . . . . . . 14 (+g𝑈) = (+g𝑈)
1093, 10, 1, 2, 4, 8, 108imasaddval 15964 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 · 𝑦) ∈ 𝑉 ∧ (𝑥 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧))))
11063, 65, 107, 109syl3anc 1318 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))) = (𝐹‘((𝑥 · 𝑦) + (𝑥 · 𝑧))))
11198, 105, 1103eqtr4d 2654 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))))
1123, 10, 1, 2, 4, 8, 108imasaddval 15964 . . . . . . . . . . . . 13 ((𝜑𝑦𝑉𝑧𝑉) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 + 𝑧)))
1131123adant3r1 1266 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝐹‘(𝑦 + 𝑧)))
114113oveq2d 6543 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = ((𝐹𝑥)(.r𝑈)(𝐹‘(𝑦 + 𝑧))))
1153, 16, 1, 2, 4, 17, 18imasmulval 15967 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉𝑧𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑥 · 𝑧)))
1161153adant3r2 1267 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)(𝐹𝑧)) = (𝐹‘(𝑥 · 𝑧)))
11775, 116oveq12d 6545 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))) = ((𝐹‘(𝑥 · 𝑦))(+g𝑈)(𝐹‘(𝑥 · 𝑧))))
118111, 114, 1173eqtr4d 2654 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))))
11982, 84oveq12d 6545 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑦)(+g𝑈)(𝐹𝑧)) = (𝑣(+g𝑈)𝑤))
12081, 119oveq12d 6545 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)))
12181, 84oveq12d 6545 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(.r𝑈)(𝐹𝑧)) = (𝑢(.r𝑈)𝑤))
12283, 121oveq12d 6545 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))
123120, 122eqeq12d 2625 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)((𝐹𝑦)(+g𝑈)(𝐹𝑧))) = (((𝐹𝑥)(.r𝑈)(𝐹𝑦))(+g𝑈)((𝐹𝑥)(.r𝑈)(𝐹𝑧))) ↔ (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
124118, 123syl5ibcom 234 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
1251243exp2 1277 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))))))
126125imp32 448 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))))
127126rexlimdv 3012 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
128127rexlimdvva 3020 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
12948, 128sylbid 229 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤))))
130129imp 444 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢(.r𝑈)(𝑣(+g𝑈)𝑤)) = ((𝑢(.r𝑈)𝑣)(+g𝑈)(𝑢(.r𝑈)𝑤)))
13125, 8, 17ringdir 18339 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
13249, 53, 56, 59, 131syl13anc 1320 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
133132fveq2d 6092 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) · 𝑧)) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧))))
134101caovclg 6702 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
1351343adantr3 1215 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
1363, 16, 1, 2, 4, 17, 18imasmulval 15967 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 + 𝑦) ∈ 𝑉𝑧𝑉) → ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧)))
13763, 135, 57, 136syl3anc 1318 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)) = (𝐹‘((𝑥 + 𝑦) · 𝑧)))
1383, 10, 1, 2, 4, 8, 108imasaddval 15964 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 · 𝑧) ∈ 𝑉 ∧ (𝑦 · 𝑧) ∈ 𝑉) → ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧))))
13963, 107, 70, 138syl3anc 1318 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))) = (𝐹‘((𝑥 · 𝑧) + (𝑦 · 𝑧))))
140133, 137, 1393eqtr4d 2654 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))))
1413, 10, 1, 2, 4, 8, 108imasaddval 15964 . . . . . . . . . . . . 13 ((𝜑𝑥𝑉𝑦𝑉) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
1421413adant3r3 1268 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
143142oveq1d 6542 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝐹‘(𝑥 + 𝑦))(.r𝑈)(𝐹𝑧)))
144116, 78oveq12d 6545 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = ((𝐹‘(𝑥 · 𝑧))(+g𝑈)(𝐹‘(𝑦 · 𝑧))))
145140, 143, 1443eqtr4d 2654 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))))
14681, 82oveq12d 6545 . . . . . . . . . . . 12 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝐹𝑥)(+g𝑈)(𝐹𝑦)) = (𝑢(+g𝑈)𝑣))
147146, 84oveq12d 6545 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤))
148121, 86oveq12d 6545 . . . . . . . . . . 11 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))
149147, 148eqeq12d 2625 . . . . . . . . . 10 (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((((𝐹𝑥)(+g𝑈)(𝐹𝑦))(.r𝑈)(𝐹𝑧)) = (((𝐹𝑥)(.r𝑈)(𝐹𝑧))(+g𝑈)((𝐹𝑦)(.r𝑈)(𝐹𝑧))) ↔ ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
150145, 149syl5ibcom 234 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
1511503exp2 1277 . . . . . . . 8 (𝜑 → (𝑥𝑉 → (𝑦𝑉 → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))))))
152151imp32 448 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑧𝑉 → (((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))))
153152rexlimdv 3012 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
154153rexlimdvva 3020 . . . . 5 (𝜑 → (∃𝑥𝑉𝑦𝑉𝑧𝑉 ((𝐹𝑥) = 𝑢 ∧ (𝐹𝑦) = 𝑣 ∧ (𝐹𝑧) = 𝑤) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
15548, 154sylbid 229 . . . 4 (𝜑 → ((𝑢𝐵𝑣𝐵𝑤𝐵) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤))))
156155imp 444 . . 3 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑈)𝑣)(.r𝑈)𝑤) = ((𝑢(.r𝑈)𝑤)(+g𝑈)(𝑣(.r𝑈)𝑤)))
157 fof 6013 . . . . 5 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
1583, 157syl 17 . . . 4 (𝜑𝐹:𝑉𝐵)
159 imasring.o . . . . . . 7 1 = (1r𝑅)
16025, 159ringidcl 18340 . . . . . 6 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
1614, 160syl 17 . . . . 5 (𝜑1 ∈ (Base‘𝑅))
162161, 2eleqtrrd 2691 . . . 4 (𝜑1𝑉)
163158, 162ffvelrnd 6253 . . 3 (𝜑 → (𝐹1 ) ∈ 𝐵)
16440, 41syl 17 . . . . . 6 (𝜑 → (𝑢 ∈ ran 𝐹 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
16535, 164bitr3d 269 . . . . 5 (𝜑 → (𝑢𝐵 ↔ ∃𝑥𝑉 (𝐹𝑥) = 𝑢))
166 simpl 472 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝜑)
167162adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑉) → 1𝑉)
168 simpr 476 . . . . . . . . 9 ((𝜑𝑥𝑉) → 𝑥𝑉)
1693, 16, 1, 2, 4, 17, 18imasmulval 15967 . . . . . . . . 9 ((𝜑1𝑉𝑥𝑉) → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹‘( 1 · 𝑥)))
170166, 167, 168, 169syl3anc 1318 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹‘( 1 · 𝑥)))
1714adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑉) → 𝑅 ∈ Ring)
1722eleq2d 2673 . . . . . . . . . . 11 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
173172biimpa 500 . . . . . . . . . 10 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
17425, 17, 159ringlidm 18343 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → ( 1 · 𝑥) = 𝑥)
175171, 173, 174syl2anc 691 . . . . . . . . 9 ((𝜑𝑥𝑉) → ( 1 · 𝑥) = 𝑥)
176175fveq2d 6092 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹‘( 1 · 𝑥)) = (𝐹𝑥))
177170, 176eqtrd 2644 . . . . . . 7 ((𝜑𝑥𝑉) → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹𝑥))
178 oveq2 6535 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → ((𝐹1 )(.r𝑈)(𝐹𝑥)) = ((𝐹1 )(.r𝑈)𝑢))
179 id 22 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → (𝐹𝑥) = 𝑢)
180178, 179eqeq12d 2625 . . . . . . 7 ((𝐹𝑥) = 𝑢 → (((𝐹1 )(.r𝑈)(𝐹𝑥)) = (𝐹𝑥) ↔ ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
181177, 180syl5ibcom 234 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐹𝑥) = 𝑢 → ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
182181rexlimdva 3013 . . . . 5 (𝜑 → (∃𝑥𝑉 (𝐹𝑥) = 𝑢 → ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
183165, 182sylbid 229 . . . 4 (𝜑 → (𝑢𝐵 → ((𝐹1 )(.r𝑈)𝑢) = 𝑢))
184183imp 444 . . 3 ((𝜑𝑢𝐵) → ((𝐹1 )(.r𝑈)𝑢) = 𝑢)
1853, 16, 1, 2, 4, 17, 18imasmulval 15967 . . . . . . . . 9 ((𝜑𝑥𝑉1𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹‘(𝑥 · 1 )))
186167, 185mpd3an3 1417 . . . . . . . 8 ((𝜑𝑥𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹‘(𝑥 · 1 )))
18725, 17, 159ringridm 18344 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 · 1 ) = 𝑥)
188171, 173, 187syl2anc 691 . . . . . . . . 9 ((𝜑𝑥𝑉) → (𝑥 · 1 ) = 𝑥)
189188fveq2d 6092 . . . . . . . 8 ((𝜑𝑥𝑉) → (𝐹‘(𝑥 · 1 )) = (𝐹𝑥))
190186, 189eqtrd 2644 . . . . . . 7 ((𝜑𝑥𝑉) → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹𝑥))
191 oveq1 6534 . . . . . . . 8 ((𝐹𝑥) = 𝑢 → ((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝑢(.r𝑈)(𝐹1 )))
192191, 179eqeq12d 2625 . . . . . . 7 ((𝐹𝑥) = 𝑢 → (((𝐹𝑥)(.r𝑈)(𝐹1 )) = (𝐹𝑥) ↔ (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
193190, 192syl5ibcom 234 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐹𝑥) = 𝑢 → (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
194193rexlimdva 3013 . . . . 5 (𝜑 → (∃𝑥𝑉 (𝐹𝑥) = 𝑢 → (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
195165, 194sylbid 229 . . . 4 (𝜑 → (𝑢𝐵 → (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
196195imp 444 . . 3 ((𝜑𝑢𝐵) → (𝑢(.r𝑈)(𝐹1 )) = 𝑢)
1975, 6, 7, 15, 32, 95, 130, 156, 163, 184, 196isringd 18357 . 2 (𝜑𝑈 ∈ Ring)
198163, 5eleqtrd 2690 . . . 4 (𝜑 → (𝐹1 ) ∈ (Base‘𝑈))
1995eleq2d 2673 . . . . . 6 (𝜑 → (𝑢𝐵𝑢 ∈ (Base‘𝑈)))
200183, 195jcad 554 . . . . . 6 (𝜑 → (𝑢𝐵 → (((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)))
201199, 200sylbird 249 . . . . 5 (𝜑 → (𝑢 ∈ (Base‘𝑈) → (((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)))
202201ralrimiv 2948 . . . 4 (𝜑 → ∀𝑢 ∈ (Base‘𝑈)(((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢))
203 eqid 2610 . . . . . 6 (Base‘𝑈) = (Base‘𝑈)
204 eqid 2610 . . . . . 6 (1r𝑈) = (1r𝑈)
205203, 18, 204isringid 18345 . . . . 5 (𝑈 ∈ Ring → (((𝐹1 ) ∈ (Base‘𝑈) ∧ ∀𝑢 ∈ (Base‘𝑈)(((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)) ↔ (1r𝑈) = (𝐹1 )))
206197, 205syl 17 . . . 4 (𝜑 → (((𝐹1 ) ∈ (Base‘𝑈) ∧ ∀𝑢 ∈ (Base‘𝑈)(((𝐹1 )(.r𝑈)𝑢) = 𝑢 ∧ (𝑢(.r𝑈)(𝐹1 )) = 𝑢)) ↔ (1r𝑈) = (𝐹1 )))
207198, 202, 206mpbi2and 958 . . 3 (𝜑 → (1r𝑈) = (𝐹1 ))
208207eqcomd 2616 . 2 (𝜑 → (𝐹1 ) = (1r𝑈))
209197, 208jca 553 1 (𝜑 → (𝑈 ∈ Ring ∧ (𝐹1 ) = (1r𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897   × cxp 5026  ran crn 5029   Fn wfn 5785  wf 5786  ontowfo 5788  cfv 5790  (class class class)co 6527  Basecbs 15644  +gcplusg 15717  .rcmulr 15718  0gc0g 15872  s cimas 15936  Grpcgrp 17194  1rcur 18273  Ringcrg 18319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-inf 8210  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-fz 12156  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-plusg 15730  df-mulr 15731  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-0g 15874  df-imas 15940  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-grp 17197  df-minusg 17198  df-mgp 18262  df-ur 18274  df-ring 18321
This theorem is referenced by:  qusring2  18392
  Copyright terms: Public domain W3C validator