MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundi Structured version   Visualization version   GIF version

Theorem imaundi 5450
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
imaundi (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem imaundi
StepHypRef Expression
1 resundi 5317 . . . 4 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
21rneqi 5260 . . 3 ran (𝐴 ↾ (𝐵𝐶)) = ran ((𝐴𝐵) ∪ (𝐴𝐶))
3 rnun 5446 . . 3 ran ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
42, 3eqtri 2631 . 2 ran (𝐴 ↾ (𝐵𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
5 df-ima 5041 . 2 (𝐴 “ (𝐵𝐶)) = ran (𝐴 ↾ (𝐵𝐶))
6 df-ima 5041 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
7 df-ima 5041 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
86, 7uneq12i 3726 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
94, 5, 83eqtr4i 2641 1 (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  cun 3537  ran crn 5029  cres 5030  cima 5031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-xp 5034  df-cnv 5036  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041
This theorem is referenced by:  fnimapr  6157  domunfican  8095  fiint  8099  fodomfi  8101  marypha1lem  8199  dprd2da  18210  dmdprdsplit2lem  18213  uniioombllem3  23076  mbfimaicc  23123  plyeq0  23688  eupath2lem3  26272  ffsrn  28698  imadifss  32357  poimirlem1  32383  poimirlem2  32384  poimirlem3  32385  poimirlem4  32386  poimirlem6  32388  poimirlem7  32389  poimirlem11  32393  poimirlem12  32394  poimirlem15  32397  poimirlem16  32398  poimirlem17  32399  poimirlem19  32401  poimirlem20  32402  poimirlem23  32405  poimirlem24  32406  poimirlem25  32407  poimirlem29  32411  poimirlem31  32413  mbfposadd  32430  itg2addnclem2  32435  ftc1anclem1  32458  ftc1anclem5  32462  brtrclfv2  36841  frege77d  36860  frege109d  36871  frege131d  36878  dffrege76  37056  icccncfext  38577  resunimafz0  40195
  Copyright terms: Public domain W3C validator