MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundir Structured version   Visualization version   GIF version

Theorem imaundir 5702
Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.)
Assertion
Ref Expression
imaundir ((𝐴𝐵) “ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem imaundir
StepHypRef Expression
1 df-ima 5277 . . 3 ((𝐴𝐵) “ 𝐶) = ran ((𝐴𝐵) ↾ 𝐶)
2 resundir 5567 . . . 4 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
32rneqi 5505 . . 3 ran ((𝐴𝐵) ↾ 𝐶) = ran ((𝐴𝐶) ∪ (𝐵𝐶))
4 rnun 5697 . . 3 ran ((𝐴𝐶) ∪ (𝐵𝐶)) = (ran (𝐴𝐶) ∪ ran (𝐵𝐶))
51, 3, 43eqtri 2784 . 2 ((𝐴𝐵) “ 𝐶) = (ran (𝐴𝐶) ∪ ran (𝐵𝐶))
6 df-ima 5277 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
7 df-ima 5277 . . 3 (𝐵𝐶) = ran (𝐵𝐶)
86, 7uneq12i 3906 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = (ran (𝐴𝐶) ∪ ran (𝐵𝐶))
95, 8eqtr4i 2783 1 ((𝐴𝐵) “ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1630  cun 3711  ran crn 5265  cres 5266  cima 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-rab 3057  df-v 3340  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-sn 4320  df-pr 4322  df-op 4326  df-br 4803  df-opab 4863  df-cnv 5272  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277
This theorem is referenced by:  fvun  6428  suppun  7481  fsuppun  8457  fpwwe2lem13  9654  ustuqtop1  22244  mbfres2  23609  imadifxp  29719  eulerpartlemt  30740  bj-projun  33286  poimirlem3  33723  poimirlem15  33735  brtrclfv2  38519  frege131d  38556  unhe1  38579  frege110  38767  frege133  38790  aacllem  43058
  Copyright terms: Public domain W3C validator