 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imdistand Structured version   Visualization version   GIF version

Theorem imdistand 723
 Description: Distribution of implication with conjunction (deduction rule). (Contributed by NM, 27-Aug-2004.)
Hypothesis
Ref Expression
imdistand.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imdistand (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))

Proof of Theorem imdistand
StepHypRef Expression
1 imdistand.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 imdistan 720 . 2 ((𝜓 → (𝜒𝜃)) ↔ ((𝜓𝜒) → (𝜓𝜃)))
31, 2sylib 206 1 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 195  df-an 384 This theorem is referenced by:  imdistanda  724  a2and  848  predpo  5601  unblem1  8074  cfub  8931  lbzbi  11608  poimirlem32  32407  ispridl2  32803  ispridlc  32835  lnr2i  36501  rfovcnvf1od  37114
 Copyright terms: Public domain W3C validator