![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imori | Structured version Visualization version GIF version |
Description: Infer disjunction from implication. (Contributed by NM, 12-Mar-2012.) |
Ref | Expression |
---|---|
imori.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imori | ⊢ (¬ 𝜑 ∨ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imori.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | imor 427 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ (¬ 𝜑 ∨ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 |
This theorem is referenced by: pm2.1 432 pm2.26 963 rb-ax1 1826 numclwwlk3lemOLD 27550 meran1 32716 meran2 32717 meran3 32718 tsim3 34252 tsor2 34268 tsor3 34269 spr0nelg 42236 |
Copyright terms: Public domain | W3C validator |