MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impac Structured version   Visualization version   GIF version

Theorem impac 651
Description: Importation with conjunction in consequent. (Contributed by NM, 9-Aug-1994.)
Hypothesis
Ref Expression
impac.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
impac ((𝜑𝜓) → (𝜒𝜓))

Proof of Theorem impac
StepHypRef Expression
1 impac.1 . . 3 (𝜑 → (𝜓𝜒))
21ancrd 577 . 2 (𝜑 → (𝜓 → (𝜒𝜓)))
32imp 445 1 ((𝜑𝜓) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  imdistanri  727  f1elima  6517  zfrep6  7131  repswswrd  13525  sltval2  31793  bj-snsetex  32935
  Copyright terms: Public domain W3C validator