MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in4 Structured version   Visualization version   GIF version

Theorem in4 3812
Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.)
Assertion
Ref Expression
in4 ((𝐴𝐵) ∩ (𝐶𝐷)) = ((𝐴𝐶) ∩ (𝐵𝐷))

Proof of Theorem in4
StepHypRef Expression
1 in12 3807 . . 3 (𝐵 ∩ (𝐶𝐷)) = (𝐶 ∩ (𝐵𝐷))
21ineq2i 3794 . 2 (𝐴 ∩ (𝐵 ∩ (𝐶𝐷))) = (𝐴 ∩ (𝐶 ∩ (𝐵𝐷)))
3 inass 3806 . 2 ((𝐴𝐵) ∩ (𝐶𝐷)) = (𝐴 ∩ (𝐵 ∩ (𝐶𝐷)))
4 inass 3806 . 2 ((𝐴𝐶) ∩ (𝐵𝐷)) = (𝐴 ∩ (𝐶 ∩ (𝐵𝐷)))
52, 3, 43eqtr4i 2653 1 ((𝐴𝐵) ∩ (𝐶𝐷)) = ((𝐴𝐶) ∩ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  cin 3558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3191  df-in 3566
This theorem is referenced by:  inindi  3813  inindir  3814  fh2  28345  disjxpin  29264
  Copyright terms: Public domain W3C validator