![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inabs3 | Structured version Visualization version GIF version |
Description: Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
inabs3 | ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 3962 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
2 | sseqin2 3956 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) | |
3 | 2 | biimpi 206 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ∩ 𝐶) = 𝐶) |
4 | 3 | ineq2d 3953 | . 2 ⊢ (𝐶 ⊆ 𝐵 → (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐴 ∩ 𝐶)) |
5 | 1, 4 | syl5eq 2802 | 1 ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1628 ∩ cin 3710 ⊆ wss 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-v 3338 df-in 3718 df-ss 3725 |
This theorem is referenced by: carageniuncllem1 41237 |
Copyright terms: Public domain | W3C validator |