MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaghl Structured version   Visualization version   GIF version

Theorem inaghl 25444
Description: The "point lie in angle" relation is independent of the points chosen on the half lines starting from 𝐵. Theorem 11.25 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
inagswap.g (𝜑𝐺 ∈ TarskiG)
inagswap.1 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
inaghl.d (𝜑𝐷𝑃)
inaghl.f (𝜑𝐹𝑃)
inaghl.y (𝜑𝑌𝑃)
inaghl.1 (𝜑𝐷(𝐾𝐵)𝐴)
inaghl.2 (𝜑𝐹(𝐾𝐵)𝐶)
inaghl.3 (𝜑𝑌(𝐾𝐵)𝑋)
Assertion
Ref Expression
inaghl (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)

Proof of Theorem inaghl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinag.p . . . . 5 𝑃 = (Base‘𝐺)
2 isinag.i . . . . 5 𝐼 = (Itv‘𝐺)
3 isinag.k . . . . 5 𝐾 = (hlG‘𝐺)
4 inaghl.d . . . . 5 (𝜑𝐷𝑃)
5 isinag.a . . . . 5 (𝜑𝐴𝑃)
6 isinag.b . . . . 5 (𝜑𝐵𝑃)
7 inagswap.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
8 inaghl.1 . . . . 5 (𝜑𝐷(𝐾𝐵)𝐴)
91, 2, 3, 4, 5, 6, 7, 8hlne1 25213 . . . 4 (𝜑𝐷𝐵)
10 inaghl.f . . . . 5 (𝜑𝐹𝑃)
11 isinag.c . . . . 5 (𝜑𝐶𝑃)
12 inaghl.2 . . . . 5 (𝜑𝐹(𝐾𝐵)𝐶)
131, 2, 3, 10, 11, 6, 7, 12hlne1 25213 . . . 4 (𝜑𝐹𝐵)
14 inaghl.y . . . . 5 (𝜑𝑌𝑃)
15 isinag.x . . . . 5 (𝜑𝑋𝑃)
16 inaghl.3 . . . . 5 (𝜑𝑌(𝐾𝐵)𝑋)
171, 2, 3, 14, 15, 6, 7, 16hlne1 25213 . . . 4 (𝜑𝑌𝐵)
189, 13, 173jca 1234 . . 3 (𝜑 → (𝐷𝐵𝐹𝐵𝑌𝐵))
196adantr 479 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
20 eleq1 2670 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 ∈ (𝐷𝐼𝐹) ↔ 𝐵 ∈ (𝐷𝐼𝐹)))
21 eqeq1 2608 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = 𝐵𝐵 = 𝐵))
22 breq1 4575 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦(𝐾𝐵)𝑌𝐵(𝐾𝐵)𝑌))
2321, 22orbi12d 741 . . . . . . 7 (𝑦 = 𝐵 → ((𝑦 = 𝐵𝑦(𝐾𝐵)𝑌) ↔ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌)))
2420, 23anbi12d 742 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))))
2524adantl 480 . . . . 5 (((𝜑𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑦 = 𝐵) → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))))
265adantr 479 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
274adantr 479 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
2810adantr 479 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
297adantr 479 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
301, 2, 3, 4, 5, 6, 7, 8hlcomd 25212 . . . . . . . 8 (𝜑𝐴(𝐾𝐵)𝐷)
3130adantr 479 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴(𝐾𝐵)𝐷)
32 eqid 2604 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
3311adantr 479 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
341, 2, 3, 10, 11, 6, 7, 12hlcomd 25212 . . . . . . . . . 10 (𝜑𝐶(𝐾𝐵)𝐹)
3534adantr 479 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶(𝐾𝐵)𝐹)
36 simpr 475 . . . . . . . . . 10 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
371, 32, 2, 29, 26, 19, 33, 36tgbtwncom 25095 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴))
381, 2, 3, 33, 28, 26, 29, 19, 35, 37btwnhl 25222 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐹𝐼𝐴))
391, 32, 2, 29, 28, 19, 26, 38tgbtwncom 25095 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐹))
401, 2, 3, 26, 27, 28, 29, 19, 31, 39btwnhl 25222 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐹))
41 eqidd 2605 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 = 𝐵)
4241orcd 405 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))
4340, 42jca 552 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌)))
4419, 25, 43rspcedvd 3283 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
45 simpllr 794 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥𝑃)
46 simpr 475 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
4746eleq1d 2666 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦 ∈ (𝐷𝐼𝐹) ↔ 𝑥 ∈ (𝐷𝐼𝐹)))
4846eqeq1d 2606 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦 = 𝐵𝑥 = 𝐵))
4946breq1d 4582 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦(𝐾𝐵)𝑌𝑥(𝐾𝐵)𝑌))
5048, 49orbi12d 741 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → ((𝑦 = 𝐵𝑦(𝐾𝐵)𝑌) ↔ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌)))
5147, 50anbi12d 742 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝑥 ∈ (𝐷𝐼𝐹) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌))))
52 simpr 475 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
535ad4antr 763 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐴𝑃)
544ad4antr 763 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐷𝑃)
5510ad4antr 763 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐹𝑃)
567ad4antr 763 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐺 ∈ TarskiG)
576ad4antr 763 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵𝑃)
5830ad4antr 763 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐴(𝐾𝐵)𝐷)
5911ad4antr 763 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐶𝑃)
6034ad4antr 763 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐶(𝐾𝐵)𝐹)
61 simplr 787 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴𝐼𝐶))
621, 32, 2, 56, 53, 45, 59, 61tgbtwncom 25095 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐶𝐼𝐴))
6352, 62eqeltrrd 2683 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐶𝐼𝐴))
641, 2, 3, 59, 55, 53, 56, 57, 60, 63btwnhl 25222 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐹𝐼𝐴))
651, 32, 2, 56, 55, 57, 53, 64tgbtwncom 25095 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴𝐼𝐹))
661, 2, 3, 53, 54, 55, 56, 57, 58, 65btwnhl 25222 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐷𝐼𝐹))
6752, 66eqeltrd 2682 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐷𝐼𝐹))
6852orcd 405 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌))
6967, 68jca 552 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 ∈ (𝐷𝐼𝐹) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌)))
7045, 51, 69rspcedvd 3283 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
717ad4antr 763 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐺 ∈ TarskiG)
7271ad2antrr 757 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐺 ∈ TarskiG)
73 simplr 787 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧𝑃)
746ad4antr 763 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐵𝑃)
7574ad2antrr 757 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐵𝑃)
7611ad4antr 763 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐶𝑃)
7776ad2antrr 757 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐶𝑃)
784ad4antr 763 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐷𝑃)
7978ad2antrr 757 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐷𝑃)
8010ad6antr 767 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐹𝑃)
81 simpllr 794 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥𝑃)
8281ad2antrr 757 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑥𝑃)
83 simprl 789 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑥(𝐾𝐵)𝑧)
841, 2, 3, 82, 73, 75, 72, 83hlne2 25214 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧𝐵)
8534ad6antr 767 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐶(𝐾𝐵)𝐹)
86 simprr 791 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧 ∈ (𝐶𝐼𝐷))
871, 32, 2, 72, 77, 73, 79, 86tgbtwncom 25095 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧 ∈ (𝐷𝐼𝐶))
881, 2, 3, 72, 73, 75, 77, 79, 80, 84, 85, 87hlpasch 25361 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → ∃𝑦𝑃 (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)))
89 simprr 791 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦 ∈ (𝐷𝐼𝐹))
90 simplr 787 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦𝑃)
9173ad2antrr 757 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧𝑃)
9214ad8antr 771 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌𝑃)
9372ad2antrr 757 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝐺 ∈ TarskiG)
9475ad2antrr 757 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝐵𝑃)
95 simprl 789 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧(𝐾𝐵)𝑦)
961, 2, 3, 91, 90, 94, 93, 95hlcomd 25212 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦(𝐾𝐵)𝑧)
9781ad4antr 763 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥𝑃)
9815ad8antr 771 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑋𝑃)
9916ad8antr 771 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑋)
100 simp-5r 804 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥(𝐾𝐵)𝑋)
1011, 2, 3, 97, 98, 94, 93, 100hlcomd 25212 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑋(𝐾𝐵)𝑥)
1021, 2, 3, 92, 98, 97, 93, 94, 99, 101hltr 25218 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑥)
103 simpllr 794 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷)))
104103simpld 473 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥(𝐾𝐵)𝑧)
1051, 2, 3, 92, 97, 91, 93, 94, 102, 104hltr 25218 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑧)
1061, 2, 3, 92, 91, 94, 93, 105hlcomd 25212 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧(𝐾𝐵)𝑌)
1071, 2, 3, 90, 91, 92, 93, 94, 96, 106hltr 25218 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦(𝐾𝐵)𝑌)
108107olcd 406 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))
10989, 108jca 552 . . . . . . . . . . 11 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
110109ex 448 . . . . . . . . . 10 ((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) → ((𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)) → (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
111110reximdva 2994 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → (∃𝑦𝑃 (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
11288, 111mpd 15 . . . . . . . 8 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
1135ad4antr 763 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐴𝑃)
11415ad4antr 763 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑋𝑃)
115 simpr 475 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥(𝐾𝐵)𝑋)
1161, 2, 3, 81, 114, 74, 71, 115hlne1 25213 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥𝐵)
11730ad4antr 763 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐴(𝐾𝐵)𝐷)
118 simplr 787 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥 ∈ (𝐴𝐼𝐶))
1191, 32, 2, 71, 113, 81, 76, 118tgbtwncom 25095 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥 ∈ (𝐶𝐼𝐴))
1201, 2, 3, 71, 81, 74, 113, 76, 78, 116, 117, 119hlpasch 25361 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → ∃𝑧𝑃 (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷)))
121112, 120r19.29a 3054 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
12270, 121jaodan 821 . . . . . 6 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
123122anasss 676 . . . . 5 ((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
124 inagswap.1 . . . . . . . 8 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1251, 2, 3, 15, 5, 6, 11, 7isinag 25442 . . . . . . . 8 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
126124, 125mpbid 220 . . . . . . 7 (𝜑 → ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
127126simprd 477 . . . . . 6 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
128127adantr 479 . . . . 5 ((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
129123, 128r19.29a 3054 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
13044, 129pm2.61dan 827 . . 3 (𝜑 → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
13118, 130jca 552 . 2 (𝜑 → ((𝐷𝐵𝐹𝐵𝑌𝐵) ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
1321, 2, 3, 14, 4, 6, 10, 7isinag 25442 . 2 (𝜑 → (𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩ ↔ ((𝐷𝐵𝐹𝐵𝑌𝐵) ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))))
133131, 132mpbird 245 1 (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2774  wrex 2891   class class class wbr 4572  cfv 5785  (class class class)co 6522  ⟨“cs3 13379  Basecbs 15636  distcds 15718  TarskiGcstrkg 25041  Itvcitv 25047  hlGchlg 25208  inAcinag 25439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-1st 7031  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-oadd 7423  df-er 7601  df-map 7718  df-pm 7719  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-card 8620  df-cda 8845  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-nn 10863  df-2 10921  df-3 10922  df-n0 11135  df-z 11206  df-uz 11515  df-fz 12148  df-fzo 12285  df-hash 12930  df-word 13095  df-concat 13097  df-s1 13098  df-s2 13385  df-s3 13386  df-trkgc 25059  df-trkgb 25060  df-trkgcb 25061  df-trkgld 25063  df-trkg 25064  df-cgrg 25119  df-leg 25191  df-hlg 25209  df-mir 25261  df-rag 25302  df-perpg 25304  df-inag 25441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator