![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inagswap | Structured version Visualization version GIF version |
Description: Swap the order of the half lines delimiting the angle. Theorem 11.24 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.) |
Ref | Expression |
---|---|
isinag.p | ⊢ 𝑃 = (Base‘𝐺) |
isinag.i | ⊢ 𝐼 = (Itv‘𝐺) |
isinag.k | ⊢ 𝐾 = (hlG‘𝐺) |
isinag.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
isinag.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
isinag.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
isinag.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
inagswap.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
inagswap.1 | ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) |
Ref | Expression |
---|---|
inagswap | ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐶𝐵𝐴”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inagswap.1 | . . . . . . 7 ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉) | |
2 | isinag.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝐺) | |
3 | isinag.i | . . . . . . . 8 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | isinag.k | . . . . . . . 8 ⊢ 𝐾 = (hlG‘𝐺) | |
5 | isinag.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
6 | isinag.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | isinag.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | isinag.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
9 | inagswap.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | isinag 25774 | . . . . . . 7 ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐴𝐵𝐶”〉 ↔ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) |
11 | 1, 10 | mpbid 222 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
12 | 11 | simpld 474 | . . . . 5 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵)) |
13 | 12 | simp2d 1094 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
14 | 12 | simp1d 1093 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
15 | 12 | simp3d 1095 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 𝐵) |
16 | 13, 14, 15 | 3jca 1261 | . . 3 ⊢ (𝜑 → (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵)) |
17 | 11 | simprd 478 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) |
18 | eqid 2651 | . . . . . . . 8 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
19 | 9 | 3ad2ant1 1102 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG) |
20 | 6 | 3ad2ant1 1102 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝐴 ∈ 𝑃) |
21 | simp2 1082 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ 𝑃) | |
22 | 8 | 3ad2ant1 1102 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝐶 ∈ 𝑃) |
23 | simp3 1083 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ (𝐴𝐼𝐶)) | |
24 | 2, 18, 3, 19, 20, 21, 22, 23 | tgbtwncom 25428 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃 ∧ 𝑥 ∈ (𝐴𝐼𝐶)) → 𝑥 ∈ (𝐶𝐼𝐴)) |
25 | 24 | 3expia 1286 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑥 ∈ (𝐴𝐼𝐶) → 𝑥 ∈ (𝐶𝐼𝐴))) |
26 | 25 | anim1d 587 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ((𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)) → (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
27 | 26 | reximdva 3046 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)) → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
28 | 17, 27 | mpd 15 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))) |
29 | 16, 28 | jca 553 | . 2 ⊢ (𝜑 → ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋)))) |
30 | 2, 3, 4, 5, 8, 7, 6, 9 | isinag 25774 | . 2 ⊢ (𝜑 → (𝑋(inA‘𝐺)〈“𝐶𝐵𝐴”〉 ↔ ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ 𝑋 ≠ 𝐵) ∧ ∃𝑥 ∈ 𝑃 (𝑥 ∈ (𝐶𝐼𝐴) ∧ (𝑥 = 𝐵 ∨ 𝑥(𝐾‘𝐵)𝑋))))) |
31 | 29, 30 | mpbird 247 | 1 ⊢ (𝜑 → 𝑋(inA‘𝐺)〈“𝐶𝐵𝐴”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∃wrex 2942 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 〈“cs3 13633 Basecbs 15904 distcds 15997 TarskiGcstrkg 25374 Itvcitv 25380 hlGchlg 25540 inAcinag 25771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-concat 13333 df-s1 13334 df-s2 13639 df-s3 13640 df-trkgc 25392 df-trkgb 25393 df-trkgcb 25394 df-trkg 25397 df-inag 25773 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |