Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz Structured version   Visualization version   GIF version

Theorem incsequz 34904
Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
Distinct variable groups:   𝑚,𝐹,𝑛   𝐴,𝑚,𝑛

Proof of Theorem incsequz
Dummy variables 𝑘 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . . . . . 7 (𝑝 = 1 → (ℤ𝑝) = (ℤ‘1))
21eleq2d 2895 . . . . . 6 (𝑝 = 1 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ‘1)))
32rexbidv 3294 . . . . 5 (𝑝 = 1 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1)))
43imbi2d 342 . . . 4 (𝑝 = 1 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))))
5 fveq2 6663 . . . . . . 7 (𝑝 = 𝑞 → (ℤ𝑝) = (ℤ𝑞))
65eleq2d 2895 . . . . . 6 (𝑝 = 𝑞 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ𝑞)))
76rexbidv 3294 . . . . 5 (𝑝 = 𝑞 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞)))
87imbi2d 342 . . . 4 (𝑝 = 𝑞 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞))))
9 fveq2 6663 . . . . . . 7 (𝑝 = (𝑞 + 1) → (ℤ𝑝) = (ℤ‘(𝑞 + 1)))
109eleq2d 2895 . . . . . 6 (𝑝 = (𝑞 + 1) → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
1110rexbidv 3294 . . . . 5 (𝑝 = (𝑞 + 1) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
1211imbi2d 342 . . . 4 (𝑝 = (𝑞 + 1) → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
13 fveq2 6663 . . . . . . 7 (𝑝 = 𝐴 → (ℤ𝑝) = (ℤ𝐴))
1413eleq2d 2895 . . . . . 6 (𝑝 = 𝐴 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ𝐴)))
1514rexbidv 3294 . . . . 5 (𝑝 = 𝐴 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
1615imbi2d 342 . . . 4 (𝑝 = 𝐴 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))))
17 1nn 11637 . . . . . . 7 1 ∈ ℕ
1817ne0ii 4300 . . . . . 6 ℕ ≠ ∅
19 ffvelrn 6841 . . . . . . . 8 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℕ)
20 elnnuz 12270 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ ↔ (𝐹𝑛) ∈ (ℤ‘1))
2119, 20sylib 219 . . . . . . 7 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℤ‘1))
2221ralrimiva 3179 . . . . . 6 (𝐹:ℕ⟶ℕ → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
23 r19.2z 4436 . . . . . 6 ((ℕ ≠ ∅ ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1)) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
2418, 22, 23sylancr 587 . . . . 5 (𝐹:ℕ⟶ℕ → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
2524adantr 481 . . . 4 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
26 peano2nn 11638 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
2726adantl 482 . . . . . . . . 9 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
28 nnre 11633 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℝ)
2928ad2antrr 722 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 𝑞 ∈ ℝ)
3019nnred 11641 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3130adantlr 711 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3231adantll 710 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
33 1red 10630 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℝ)
3429, 32, 33leadd1d 11222 . . . . . . . . . . 11 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹𝑛) ↔ (𝑞 + 1) ≤ ((𝐹𝑛) + 1)))
35 fveq2 6663 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
36 fvoveq1 7168 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹‘(𝑚 + 1)) = (𝐹‘(𝑛 + 1)))
3735, 36breq12d 5070 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
3837rspcv 3615 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) → (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
3938imdistani 569 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝑛 ∈ ℕ ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
40 ffvelrn 6841 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℕ)
4126, 40sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℕ)
42 nnltp1le 12026 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑛) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ ℕ) → ((𝐹𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))))
4319, 41, 42syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))))
4443biimpa 477 . . . . . . . . . . . . . . . 16 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4544anasss 467 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1)))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4639, 45sylan2 592 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4746anass1rs 651 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4847adantll 710 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
49 peano2re 10801 . . . . . . . . . . . . . . . 16 (𝑞 ∈ ℝ → (𝑞 + 1) ∈ ℝ)
5028, 49syl 17 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℝ)
5150ad2antrr 722 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (𝑞 + 1) ∈ ℝ)
52 peano2nn 11638 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ ℕ → ((𝐹𝑛) + 1) ∈ ℕ)
5319, 52syl 17 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℕ)
5453nnred 11641 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℝ)
5554adantll 710 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℝ)
5640nnred 11641 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
5726, 56sylan2 592 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
5857adantll 710 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
59 letr 10722 . . . . . . . . . . . . . 14 (((𝑞 + 1) ∈ ℝ ∧ ((𝐹𝑛) + 1) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6051, 55, 58, 59syl3anc 1363 . . . . . . . . . . . . 13 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6160adantlrr 717 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6248, 61mpan2d 690 . . . . . . . . . . 11 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝑞 + 1) ≤ ((𝐹𝑛) + 1) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6334, 62sylbid 241 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹𝑛) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
64 nnz 11992 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
6519nnzd 12074 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℤ)
66 eluz 12245 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ (𝐹𝑛) ∈ ℤ) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6764, 65, 66syl2an 595 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6867adantrlr 719 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6968anassrs 468 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
7064peano2zd 12078 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℤ)
7140nnzd 12074 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℤ)
7226, 71sylan2 592 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℤ)
73 eluz 12245 . . . . . . . . . . . . 13 (((𝑞 + 1) ∈ ℤ ∧ (𝐹‘(𝑛 + 1)) ∈ ℤ) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7470, 72, 73syl2an 595 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7574adantrlr 719 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7675anassrs 468 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7763, 69, 763imtr4d 295 . . . . . . . . 9 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) → (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))))
78 fveq2 6663 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
7978eleq1d 2894 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))))
8079rspcev 3620 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)))
8127, 77, 80syl6an 680 . . . . . . . 8 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1))))
8281rexlimdva 3281 . . . . . . 7 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1))))
83 fveq2 6663 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8483eleq1d 2894 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
8584cbvrexvw 3448 . . . . . . 7 (∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))
8682, 85syl6ib 252 . . . . . 6 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
8786ex 413 . . . . 5 (𝑞 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
8887a2d 29 . . . 4 (𝑞 ∈ ℕ → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞)) → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
894, 8, 12, 16, 25, 88nnind 11644 . . 3 (𝐴 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
9089com12 32 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝐴 ∈ ℕ → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
91903impia 1109 1 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  c0 4288   class class class wbr 5057  wf 6344  cfv 6348  (class class class)co 7145  cr 10524  1c1 10526   + caddc 10528   < clt 10663  cle 10664  cn 11626  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232
This theorem is referenced by:  incsequz2  34905
  Copyright terms: Public domain W3C validator