Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsmflem Structured version   Visualization version   GIF version

Theorem incsmflem 40257
Description: A non decreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
incsmflem.x 𝑥𝜑
incsmflem.y 𝑦𝜑
incsmflem.a (𝜑𝐴 ⊆ ℝ)
incsmflem.f (𝜑𝐹:𝐴⟶ℝ*)
incsmflem.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
incsmflem.j 𝐽 = (topGen‘ran (,))
incsmflem.b 𝐵 = (SalGen‘𝐽)
incsmflem.r (𝜑𝑅 ∈ ℝ*)
incsmflem.l 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
incsmflem.c 𝐶 = sup(𝑌, ℝ*, < )
incsmflem.d 𝐷 = (-∞(,)𝐶)
incsmflem.e 𝐸 = (-∞(,]𝐶)
Assertion
Ref Expression
incsmflem (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Distinct variable groups:   𝐴,𝑏   𝑥,𝐴,𝑦   𝐵,𝑏   𝑥,𝐶,𝑦   𝐷,𝑏   𝑥,𝐷,𝑦   𝐸,𝑏   𝑥,𝐸,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑌,𝑏   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝐵(𝑥,𝑦)   𝐶(𝑏)   𝑅(𝑏)   𝐹(𝑏)   𝐽(𝑥,𝑦,𝑏)   𝑌(𝑥)

Proof of Theorem incsmflem
StepHypRef Expression
1 incsmflem.e . . . 4 𝐸 = (-∞(,]𝐶)
2 mnfxr 10040 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 ((𝜑𝐶𝑌) → -∞ ∈ ℝ*)
4 incsmflem.l . . . . . . . . 9 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
5 ssrab2 3666 . . . . . . . . 9 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅} ⊆ 𝐴
64, 5eqsstri 3614 . . . . . . . 8 𝑌𝐴
76a1i 11 . . . . . . 7 (𝜑𝑌𝐴)
8 incsmflem.a . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
97, 8sstrd 3593 . . . . . 6 (𝜑𝑌 ⊆ ℝ)
109sselda 3583 . . . . 5 ((𝜑𝐶𝑌) → 𝐶 ∈ ℝ)
11 incsmflem.j . . . . 5 𝐽 = (topGen‘ran (,))
12 incsmflem.b . . . . 5 𝐵 = (SalGen‘𝐽)
133, 10, 11, 12iocborel 39881 . . . 4 ((𝜑𝐶𝑌) → (-∞(,]𝐶) ∈ 𝐵)
141, 13syl5eqel 2702 . . 3 ((𝜑𝐶𝑌) → 𝐸𝐵)
15 incsmflem.x . . . . 5 𝑥𝜑
16 nfcv 2761 . . . . . 6 𝑥𝐶
17 nfrab1 3111 . . . . . . 7 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
184, 17nfcxfr 2759 . . . . . 6 𝑥𝑌
1916, 18nfel 2773 . . . . 5 𝑥 𝐶𝑌
2015, 19nfan 1825 . . . 4 𝑥(𝜑𝐶𝑌)
21 incsmflem.y . . . . 5 𝑦𝜑
22 nfv 1840 . . . . 5 𝑦 𝐶𝑌
2321, 22nfan 1825 . . . 4 𝑦(𝜑𝐶𝑌)
248adantr 481 . . . 4 ((𝜑𝐶𝑌) → 𝐴 ⊆ ℝ)
25 incsmflem.f . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2625adantr 481 . . . 4 ((𝜑𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
27 incsmflem.i . . . . 5 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
2827adantr 481 . . . 4 ((𝜑𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
29 incsmflem.r . . . . 5 (𝜑𝑅 ∈ ℝ*)
3029adantr 481 . . . 4 ((𝜑𝐶𝑌) → 𝑅 ∈ ℝ*)
31 incsmflem.c . . . 4 𝐶 = sup(𝑌, ℝ*, < )
32 simpr 477 . . . 4 ((𝜑𝐶𝑌) → 𝐶𝑌)
3320, 23, 24, 26, 28, 30, 4, 31, 32, 1pimincfltioc 40233 . . 3 ((𝜑𝐶𝑌) → 𝑌 = (𝐸𝐴))
34 ineq1 3785 . . . . 5 (𝑏 = 𝐸 → (𝑏𝐴) = (𝐸𝐴))
3534eqeq2d 2631 . . . 4 (𝑏 = 𝐸 → (𝑌 = (𝑏𝐴) ↔ 𝑌 = (𝐸𝐴)))
3635rspcev 3295 . . 3 ((𝐸𝐵𝑌 = (𝐸𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
3714, 33, 36syl2anc 692 . 2 ((𝜑𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
38 incsmflem.d . . . . . 6 𝐷 = (-∞(,)𝐶)
3911, 12iooborel 39876 . . . . . 6 (-∞(,)𝐶) ∈ 𝐵
4038, 39eqeltri 2694 . . . . 5 𝐷𝐵
4140a1i 11 . . . 4 (𝜑𝐷𝐵)
4241adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐷𝐵)
4319nfn 1781 . . . . 5 𝑥 ¬ 𝐶𝑌
4415, 43nfan 1825 . . . 4 𝑥(𝜑 ∧ ¬ 𝐶𝑌)
45 nfv 1840 . . . . 5 𝑦 ¬ 𝐶𝑌
4621, 45nfan 1825 . . . 4 𝑦(𝜑 ∧ ¬ 𝐶𝑌)
478adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐴 ⊆ ℝ)
4825adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝐹:𝐴⟶ℝ*)
4927adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
5029adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑅 ∈ ℝ*)
51 simpr 477 . . . 4 ((𝜑 ∧ ¬ 𝐶𝑌) → ¬ 𝐶𝑌)
5244, 46, 47, 48, 49, 50, 4, 31, 51, 38pimincfltioo 40235 . . 3 ((𝜑 ∧ ¬ 𝐶𝑌) → 𝑌 = (𝐷𝐴))
53 ineq1 3785 . . . . 5 (𝑏 = 𝐷 → (𝑏𝐴) = (𝐷𝐴))
5453eqeq2d 2631 . . . 4 (𝑏 = 𝐷 → (𝑌 = (𝑏𝐴) ↔ 𝑌 = (𝐷𝐴)))
5554rspcev 3295 . . 3 ((𝐷𝐵𝑌 = (𝐷𝐴)) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5642, 52, 55syl2anc 692 . 2 ((𝜑 ∧ ¬ 𝐶𝑌) → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
5737, 56pm2.61dan 831 1 (𝜑 → ∃𝑏𝐵 𝑌 = (𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wnf 1705  wcel 1987  wral 2907  wrex 2908  {crab 2911  cin 3554  wss 3555   class class class wbr 4613  ran crn 5075  wf 5843  cfv 5847  (class class class)co 6604  supcsup 8290  cr 9879  -∞cmnf 10016  *cxr 10017   < clt 10018  cle 10019  (,)cioo 12117  (,]cioc 12118  topGenctg 16019  SalGencsalgen 39839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-card 8709  df-acn 8712  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-ioo 12121  df-ioc 12122  df-fl 12533  df-topgen 16025  df-top 20621  df-bases 20622  df-salg 39836  df-salgen 39840
This theorem is referenced by:  incsmf  40258
  Copyright terms: Public domain W3C validator