Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incssnn0 Structured version   Visualization version   GIF version

Theorem incssnn0 37774
Description: Transitivity induction of subsets, lemma for nacsfix 37775. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
incssnn0 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem incssnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6350 . . . . . 6 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
21sseq2d 3772 . . . . 5 (𝑎 = 𝐴 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝐴)))
32imbi2d 329 . . . 4 (𝑎 = 𝐴 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐴))))
4 fveq2 6350 . . . . . 6 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
54sseq2d 3772 . . . . 5 (𝑎 = 𝑏 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝑏)))
65imbi2d 329 . . . 4 (𝑎 = 𝑏 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑏))))
7 fveq2 6350 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐹𝑎) = (𝐹‘(𝑏 + 1)))
87sseq2d 3772 . . . . 5 (𝑎 = (𝑏 + 1) → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
98imbi2d 329 . . . 4 (𝑎 = (𝑏 + 1) → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
10 fveq2 6350 . . . . . 6 (𝑎 = 𝐵 → (𝐹𝑎) = (𝐹𝐵))
1110sseq2d 3772 . . . . 5 (𝑎 = 𝐵 → ((𝐹𝐴) ⊆ (𝐹𝑎) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 329 . . . 4 (𝑎 = 𝐵 → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑎)) ↔ ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3763 . . . . 5 (𝐹𝐴) ⊆ (𝐹𝐴)
14132a1i 12 . . . 4 (𝐴 ∈ ℤ → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐴)))
15 eluznn0 11948 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑏 ∈ (ℤ𝐴)) → 𝑏 ∈ ℕ0)
1615ancoms 468 . . . . . . . . 9 ((𝑏 ∈ (ℤ𝐴) ∧ 𝐴 ∈ ℕ0) → 𝑏 ∈ ℕ0)
17 fveq2 6350 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
18 oveq1 6818 . . . . . . . . . . . 12 (𝑥 = 𝑏 → (𝑥 + 1) = (𝑏 + 1))
1918fveq2d 6354 . . . . . . . . . . 11 (𝑥 = 𝑏 → (𝐹‘(𝑥 + 1)) = (𝐹‘(𝑏 + 1)))
2017, 19sseq12d 3773 . . . . . . . . . 10 (𝑥 = 𝑏 → ((𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ↔ (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2120rspcv 3443 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2216, 21syl 17 . . . . . . . 8 ((𝑏 ∈ (ℤ𝐴) ∧ 𝐴 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2322expimpd 630 . . . . . . 7 (𝑏 ∈ (ℤ𝐴) → ((𝐴 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1))) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
2423ancomsd 469 . . . . . 6 (𝑏 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1))))
25 sstr2 3749 . . . . . . 7 ((𝐹𝐴) ⊆ (𝐹𝑏) → ((𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1)) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
2625com12 32 . . . . . 6 ((𝐹𝑏) ⊆ (𝐹‘(𝑏 + 1)) → ((𝐹𝐴) ⊆ (𝐹𝑏) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1))))
2724, 26syl6 35 . . . . 5 (𝑏 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → ((𝐹𝐴) ⊆ (𝐹𝑏) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
2827a2d 29 . . . 4 (𝑏 ∈ (ℤ𝐴) → (((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝑏)) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹‘(𝑏 + 1)))))
293, 6, 9, 12, 14, 28uzind4 11937 . . 3 (𝐵 ∈ (ℤ𝐴) → ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐹𝐴) ⊆ (𝐹𝐵)))
3029com12 32 . 2 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0) → (𝐵 ∈ (ℤ𝐴) → (𝐹𝐴) ⊆ (𝐹𝐵)))
31303impia 1110 1 ((∀𝑥 ∈ ℕ0 (𝐹𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0𝐵 ∈ (ℤ𝐴)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1630  wcel 2137  wral 3048  wss 3713  cfv 6047  (class class class)co 6811  1c1 10127   + caddc 10129  0cn0 11482  cz 11567  cuz 11877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-n0 11483  df-z 11568  df-uz 11878
This theorem is referenced by:  nacsfix  37775
  Copyright terms: Public domain W3C validator