Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind0 Structured version   Visualization version   GIF version

Theorem ind0 29905
Description: Value of the indicator function where it is 0. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
ind0 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0)

Proof of Theorem ind0
StepHypRef Expression
1 eldifi 3716 . . 3 (𝑋 ∈ (𝑂𝐴) → 𝑋𝑂)
2 indfval 29902 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
31, 2syl3an3 1358 . 2 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
4 eldifn 3717 . . . 4 (𝑋 ∈ (𝑂𝐴) → ¬ 𝑋𝐴)
543ad2ant3 1082 . . 3 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → ¬ 𝑋𝐴)
65iffalsed 4075 . 2 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → if(𝑋𝐴, 1, 0) = 0)
73, 6eqtrd 2655 1 ((𝑂𝑉𝐴𝑂𝑋 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1036   = wceq 1480  wcel 1987  cdif 3557  wss 3560  ifcif 4064  cfv 5857  0cc0 9896  1c1 9897  𝟭cind 29896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-i2m1 9964  ax-1ne0 9965  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-ind 29897
This theorem is referenced by:  indsum  29908
  Copyright terms: Public domain W3C validator