Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf1o Structured version   Visualization version   GIF version

Theorem indf1o 30071
Description: The bijection between a power set and the set of indicator functions. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
indf1o (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂))

Proof of Theorem indf1o
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑂𝑉𝑂𝑉)
2 0red 10038 . . 3 (𝑂𝑉 → 0 ∈ ℝ)
3 1red 10052 . . 3 (𝑂𝑉 → 1 ∈ ℝ)
4 0ne1 11085 . . . 4 0 ≠ 1
54a1i 11 . . 3 (𝑂𝑉 → 0 ≠ 1)
6 eqid 2621 . . 3 (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)))
71, 2, 3, 5, 6pw2f1o 8062 . 2 (𝑂𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂))
8 indv 30059 . . 3 (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
9 f1oeq1 6125 . . 3 ((𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))) → ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂) ↔ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂)))
108, 9syl 17 . 2 (𝑂𝑉 → ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂) ↔ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂)))
117, 10mpbird 247 1 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑𝑚 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1482  wcel 1989  wne 2793  ifcif 4084  𝒫 cpw 4156  {cpr 4177  cmpt 4727  1-1-ontowf1o 5885  cfv 5886  (class class class)co 6647  𝑚 cmap 7854  cr 9932  0cc0 9933  1c1 9934  𝟭cind 30057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-i2m1 10001  ax-1ne0 10002  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-map 7856  df-ind 30058
This theorem is referenced by:  indf1ofs  30073  eulerpartgbij  30419
  Copyright terms: Public domain W3C validator