MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indishmph Structured version   Visualization version   GIF version

Theorem indishmph 21724
Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008.) (Proof shortened by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
indishmph (𝐴𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})

Proof of Theorem indishmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8081 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 f1of 6250 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
3 f1odm 6254 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴)
4 vex 3307 . . . . . . . . . . 11 𝑓 ∈ V
54dmex 7216 . . . . . . . . . 10 dom 𝑓 ∈ V
63, 5syl6eqelr 2812 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝐴 ∈ V)
7 f1ofo 6257 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
8 fornex 7252 . . . . . . . . 9 (𝐴 ∈ V → (𝑓:𝐴onto𝐵𝐵 ∈ V))
96, 7, 8sylc 65 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝐵 ∈ V)
109, 6elmapd 7988 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓 ∈ (𝐵𝑚 𝐴) ↔ 𝑓:𝐴𝐵))
112, 10mpbird 247 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ (𝐵𝑚 𝐴))
12 indistopon 20928 . . . . . . . 8 (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴))
136, 12syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ∈ (TopOn‘𝐴))
14 cnindis 21219 . . . . . . 7 (({∅, 𝐴} ∈ (TopOn‘𝐴) ∧ 𝐵 ∈ V) → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵𝑚 𝐴))
1513, 9, 14syl2anc 696 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ({∅, 𝐴} Cn {∅, 𝐵}) = (𝐵𝑚 𝐴))
1611, 15eleqtrrd 2806 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}))
17 f1ocnv 6262 . . . . . . . 8 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
18 f1of 6250 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
1917, 18syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵𝐴)
206, 9elmapd 7988 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → (𝑓 ∈ (𝐴𝑚 𝐵) ↔ 𝑓:𝐵𝐴))
2119, 20mpbird 247 . . . . . 6 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ (𝐴𝑚 𝐵))
22 indistopon 20928 . . . . . . . 8 (𝐵 ∈ V → {∅, 𝐵} ∈ (TopOn‘𝐵))
239, 22syl 17 . . . . . . 7 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐵} ∈ (TopOn‘𝐵))
24 cnindis 21219 . . . . . . 7 (({∅, 𝐵} ∈ (TopOn‘𝐵) ∧ 𝐴 ∈ V) → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴𝑚 𝐵))
2523, 6, 24syl2anc 696 . . . . . 6 (𝑓:𝐴1-1-onto𝐵 → ({∅, 𝐵} Cn {∅, 𝐴}) = (𝐴𝑚 𝐵))
2621, 25eleqtrrd 2806 . . . . 5 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴}))
27 ishmeo 21685 . . . . 5 (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) ↔ (𝑓 ∈ ({∅, 𝐴} Cn {∅, 𝐵}) ∧ 𝑓 ∈ ({∅, 𝐵} Cn {∅, 𝐴})))
2816, 26, 27sylanbrc 701 . . . 4 (𝑓:𝐴1-1-onto𝐵𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}))
29 hmphi 21703 . . . 4 (𝑓 ∈ ({∅, 𝐴}Homeo{∅, 𝐵}) → {∅, 𝐴} ≃ {∅, 𝐵})
3028, 29syl 17 . . 3 (𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
3130exlimiv 1971 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
321, 31sylbi 207 1 (𝐴𝐵 → {∅, 𝐴} ≃ {∅, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1596  wex 1817  wcel 2103  Vcvv 3304  c0 4023  {cpr 4287   class class class wbr 4760  ccnv 5217  dom cdm 5218  wf 5997  ontowfo 5999  1-1-ontowf1o 6000  cfv 6001  (class class class)co 6765  𝑚 cmap 7974  cen 8069  TopOnctopon 20838   Cn ccn 21151  Homeochmeo 21679  chmph 21680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-1st 7285  df-2nd 7286  df-1o 7680  df-map 7976  df-en 8073  df-top 20822  df-topon 20839  df-cn 21154  df-hmeo 21681  df-hmph 21682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator