MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2 Structured version   Visualization version   GIF version

Theorem indistps2 21614
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 21613. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 21615 and indistps2ALT 21616 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.)
Hypotheses
Ref Expression
indistps2.a (Base‘𝐾) = 𝐴
indistps2.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2 𝐾 ∈ TopSp

Proof of Theorem indistps2
StepHypRef Expression
1 indistps2.a . 2 (Base‘𝐾) = 𝐴
2 indistps2.j . 2 (TopOpen‘𝐾) = {∅, 𝐴}
3 0ex 5204 . . . 4 ∅ ∈ V
4 fvex 6678 . . . . 5 (Base‘𝐾) ∈ V
51, 4eqeltrri 2910 . . . 4 𝐴 ∈ V
63, 5unipr 4845 . . 3 {∅, 𝐴} = (∅ ∪ 𝐴)
7 uncom 4129 . . 3 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
8 un0 4344 . . 3 (𝐴 ∪ ∅) = 𝐴
96, 7, 83eqtrri 2849 . 2 𝐴 = {∅, 𝐴}
10 indistop 21604 . 2 {∅, 𝐴} ∈ Top
111, 2, 9, 10istpsi 21544 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2110  Vcvv 3495  cun 3934  c0 4291  {cpr 4563   cuni 4832  cfv 6350  Basecbs 16477  TopOpenctopn 16689  TopSpctps 21534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-iota 6309  df-fun 6352  df-fv 6358  df-top 21496  df-topon 21513  df-topsp 21535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator