![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indisuni | Structured version Visualization version GIF version |
Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
indisuni | ⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indislem 20927 | . . 3 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | |
2 | fvex 6314 | . . . 4 ⊢ ( I ‘𝐴) ∈ V | |
3 | indistopon 20928 | . . . 4 ⊢ (( I ‘𝐴) ∈ V → {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴)) |
5 | 1, 4 | eqeltrri 2800 | . 2 ⊢ {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴)) |
6 | 5 | toponunii 20844 | 1 ⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 ∈ wcel 2103 Vcvv 3304 ∅c0 4023 {cpr 4287 ∪ cuni 4544 I cid 5127 ‘cfv 6001 TopOnctopon 20838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-iota 5964 df-fun 6003 df-fv 6009 df-top 20822 df-topon 20839 |
This theorem is referenced by: indiscld 21018 indisconn 21344 txindis 21560 |
Copyright terms: Public domain | W3C validator |