 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  indm Structured version   Visualization version   GIF version

Theorem indm 3844
 Description: De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
indm (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵))

Proof of Theorem indm
StepHypRef Expression
1 difindi 3839 1 (V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1474  Vcvv 3172   ∖ cdif 3536   ∪ cun 3537   ∩ cin 3538 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589 This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546 This theorem is referenced by:  difdifdir  4007
 Copyright terms: Public domain W3C validator