![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indv | Structured version Visualization version GIF version |
Description: Value of the indicator function generator with domain 𝑂. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
Ref | Expression |
---|---|
indv | ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ind 30201 | . . 3 ⊢ 𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑂 ∈ 𝑉 → 𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0))))) |
3 | pweq 4194 | . . . 4 ⊢ (𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂) | |
4 | mpteq1 4770 | . . . 4 ⊢ (𝑜 = 𝑂 → (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) | |
5 | 3, 4 | mpteq12dv 4766 | . . 3 ⊢ (𝑜 = 𝑂 → (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑜 = 𝑂) → (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
7 | elex 3243 | . 2 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ V) | |
8 | pwexg 4880 | . . 3 ⊢ (𝑂 ∈ V → 𝒫 𝑂 ∈ V) | |
9 | mptexg 6525 | . . 3 ⊢ (𝒫 𝑂 ∈ V → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) ∈ V) | |
10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) ∈ V) |
11 | 2, 6, 7, 10 | fvmptd 6327 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ifcif 4119 𝒫 cpw 4191 ↦ cmpt 4762 ‘cfv 5926 0cc0 9974 1c1 9975 𝟭cind 30200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ind 30201 |
This theorem is referenced by: indval 30203 indf1o 30214 |
Copyright terms: Public domain | W3C validator |