Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inecmo Structured version   Visualization version   GIF version

Theorem inecmo 35613
Description: Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.)
Hypothesis
Ref Expression
inecmo.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
inecmo (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑥,𝐶,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem inecmo
StepHypRef Expression
1 relelec 8337 . . . . . . 7 (Rel 𝑅 → (𝑧 ∈ [𝐵]𝑅𝐵𝑅𝑧))
2 relelec 8337 . . . . . . 7 (Rel 𝑅 → (𝑧 ∈ [𝐶]𝑅𝐶𝑅𝑧))
31, 2anbi12d 632 . . . . . 6 (Rel 𝑅 → ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) ↔ (𝐵𝑅𝑧𝐶𝑅𝑧)))
43imbi1d 344 . . . . 5 (Rel 𝑅 → (((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦)))
542ralbidv 3202 . . . 4 (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦)))
6 inecmo.1 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
76breq1d 5079 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑅𝑧𝐶𝑅𝑧))
87rmo4 3724 . . . 4 (∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐵𝑅𝑧𝐶𝑅𝑧) → 𝑥 = 𝑦))
95, 8syl6rbbr 292 . . 3 (Rel 𝑅 → (∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)))
109albidv 1920 . 2 (Rel 𝑅 → (∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧 ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦)))
11 ineleq 35612 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑥𝐴𝑧𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
12 ralcom4 3238 . . 3 (∀𝑥𝐴𝑧𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦) ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
1311, 12bitri 277 . 2 (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧𝑥𝐴𝑦𝐴 ((𝑧 ∈ [𝐵]𝑅𝑧 ∈ [𝐶]𝑅) → 𝑥 = 𝑦))
1410, 13syl6rbbr 292 1 (Rel 𝑅 → (∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥𝐴 𝐵𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  wal 1534   = wceq 1536  wcel 2113  wral 3141  ∃*wrmo 3144  cin 3938  c0 4294   class class class wbr 5069  Rel wrel 5563  [cec 8290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-xp 5564  df-rel 5565  df-cnv 5566  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-ec 8294
This theorem is referenced by:  inecmo2  35614  ineccnvmo  35615
  Copyright terms: Public domain W3C validator