MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem6 Structured version   Visualization version   GIF version

Theorem inf3lem6 8701
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8703 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem6 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem6
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . . . . . . . . 11 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . . . . . . . . 11 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 vex 3341 . . . . . . . . . . 11 𝑢 ∈ V
4 vex 3341 . . . . . . . . . . 11 𝑣 ∈ V
51, 2, 3, 4inf3lem5 8700 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ 𝑣𝑢) → (𝐹𝑣) ⊊ (𝐹𝑢)))
6 dfpss2 3832 . . . . . . . . . . 11 ((𝐹𝑣) ⊊ (𝐹𝑢) ↔ ((𝐹𝑣) ⊆ (𝐹𝑢) ∧ ¬ (𝐹𝑣) = (𝐹𝑢)))
76simprbi 483 . . . . . . . . . 10 ((𝐹𝑣) ⊊ (𝐹𝑢) → ¬ (𝐹𝑣) = (𝐹𝑢))
85, 7syl6 35 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ 𝑣𝑢) → ¬ (𝐹𝑣) = (𝐹𝑢)))
98expdimp 452 . . . . . . . 8 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ 𝑢 ∈ ω) → (𝑣𝑢 → ¬ (𝐹𝑣) = (𝐹𝑢)))
109adantrl 754 . . . . . . 7 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑣𝑢 → ¬ (𝐹𝑣) = (𝐹𝑢)))
111, 2, 4, 3inf3lem5 8700 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑣 ∈ ω ∧ 𝑢𝑣) → (𝐹𝑢) ⊊ (𝐹𝑣)))
12 dfpss2 3832 . . . . . . . . . . . 12 ((𝐹𝑢) ⊊ (𝐹𝑣) ↔ ((𝐹𝑢) ⊆ (𝐹𝑣) ∧ ¬ (𝐹𝑢) = (𝐹𝑣)))
1312simprbi 483 . . . . . . . . . . 11 ((𝐹𝑢) ⊊ (𝐹𝑣) → ¬ (𝐹𝑢) = (𝐹𝑣))
14 eqcom 2765 . . . . . . . . . . 11 ((𝐹𝑢) = (𝐹𝑣) ↔ (𝐹𝑣) = (𝐹𝑢))
1513, 14sylnib 317 . . . . . . . . . 10 ((𝐹𝑢) ⊊ (𝐹𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢))
1611, 15syl6 35 . . . . . . . . 9 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝑣 ∈ ω ∧ 𝑢𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢)))
1716expdimp 452 . . . . . . . 8 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ 𝑣 ∈ ω) → (𝑢𝑣 → ¬ (𝐹𝑣) = (𝐹𝑢)))
1817adantrr 755 . . . . . . 7 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑢𝑣 → ¬ (𝐹𝑣) = (𝐹𝑢)))
1910, 18jaod 394 . . . . . 6 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝑣𝑢𝑢𝑣) → ¬ (𝐹𝑣) = (𝐹𝑢)))
2019con2d 129 . . . . 5 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝐹𝑣) = (𝐹𝑢) → ¬ (𝑣𝑢𝑢𝑣)))
21 nnord 7236 . . . . . . 7 (𝑣 ∈ ω → Ord 𝑣)
22 nnord 7236 . . . . . . 7 (𝑢 ∈ ω → Ord 𝑢)
23 ordtri3 5918 . . . . . . 7 ((Ord 𝑣 ∧ Ord 𝑢) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2421, 22, 23syl2an 495 . . . . . 6 ((𝑣 ∈ ω ∧ 𝑢 ∈ ω) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2524adantl 473 . . . . 5 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → (𝑣 = 𝑢 ↔ ¬ (𝑣𝑢𝑢𝑣)))
2620, 25sylibrd 249 . . . 4 (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) ∧ (𝑣 ∈ ω ∧ 𝑢 ∈ ω)) → ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢))
2726ralrimivva 3107 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢))
28 frfnom 7697 . . . . . 6 (rec(𝐺, ∅) ↾ ω) Fn ω
29 fneq1 6138 . . . . . 6 (𝐹 = (rec(𝐺, ∅) ↾ ω) → (𝐹 Fn ω ↔ (rec(𝐺, ∅) ↾ ω) Fn ω))
3028, 29mpbiri 248 . . . . 5 (𝐹 = (rec(𝐺, ∅) ↾ ω) → 𝐹 Fn ω)
31 fvelrnb 6403 . . . . . . . 8 (𝐹 Fn ω → (𝑢 ∈ ran 𝐹 ↔ ∃𝑣 ∈ ω (𝐹𝑣) = 𝑢))
32 inf3lem.4 . . . . . . . . . . . 12 𝐵 ∈ V
331, 2, 4, 32inf3lemd 8695 . . . . . . . . . . 11 (𝑣 ∈ ω → (𝐹𝑣) ⊆ 𝑥)
34 fvex 6360 . . . . . . . . . . . 12 (𝐹𝑣) ∈ V
3534elpw 4306 . . . . . . . . . . 11 ((𝐹𝑣) ∈ 𝒫 𝑥 ↔ (𝐹𝑣) ⊆ 𝑥)
3633, 35sylibr 224 . . . . . . . . . 10 (𝑣 ∈ ω → (𝐹𝑣) ∈ 𝒫 𝑥)
37 eleq1 2825 . . . . . . . . . 10 ((𝐹𝑣) = 𝑢 → ((𝐹𝑣) ∈ 𝒫 𝑥𝑢 ∈ 𝒫 𝑥))
3836, 37syl5ibcom 235 . . . . . . . . 9 (𝑣 ∈ ω → ((𝐹𝑣) = 𝑢𝑢 ∈ 𝒫 𝑥))
3938rexlimiv 3163 . . . . . . . 8 (∃𝑣 ∈ ω (𝐹𝑣) = 𝑢𝑢 ∈ 𝒫 𝑥)
4031, 39syl6bi 243 . . . . . . 7 (𝐹 Fn ω → (𝑢 ∈ ran 𝐹𝑢 ∈ 𝒫 𝑥))
4140ssrdv 3748 . . . . . 6 (𝐹 Fn ω → ran 𝐹 ⊆ 𝒫 𝑥)
4241ancli 575 . . . . 5 (𝐹 Fn ω → (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥))
432, 30, 42mp2b 10 . . . 4 (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥)
44 df-f 6051 . . . 4 (𝐹:ω⟶𝒫 𝑥 ↔ (𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥))
4543, 44mpbir 221 . . 3 𝐹:ω⟶𝒫 𝑥
4627, 45jctil 561 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹:ω⟶𝒫 𝑥 ∧ ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢)))
47 dff13 6673 . 2 (𝐹:ω–1-1→𝒫 𝑥 ↔ (𝐹:ω⟶𝒫 𝑥 ∧ ∀𝑣 ∈ ω ∀𝑢 ∈ ω ((𝐹𝑣) = (𝐹𝑢) → 𝑣 = 𝑢)))
4846, 47sylibr 224 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → 𝐹:ω–1-1→𝒫 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1630  wcel 2137  wne 2930  wral 3048  wrex 3049  {crab 3052  Vcvv 3338  cin 3712  wss 3713  wpss 3714  c0 4056  𝒫 cpw 4300   cuni 4586  cmpt 4879  ran crn 5265  cres 5266  Ord word 5881   Fn wfn 6042  wf 6043  1-1wf1 6044  cfv 6047  ωcom 7228  reccrdg 7672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-reg 8660
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-om 7229  df-wrecs 7574  df-recs 7635  df-rdg 7673
This theorem is referenced by:  inf3lem7  8702  dominf  9457  dominfac  9585
  Copyright terms: Public domain W3C validator