MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lema Structured version   Visualization version   GIF version

Theorem inf3lema 8466
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8477 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lema (𝐴 ∈ (𝐺𝐵) ↔ (𝐴𝑥 ∧ (𝐴𝑥) ⊆ 𝐵))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lema
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ineq1 3790 . . 3 (𝑓 = 𝐴 → (𝑓𝑥) = (𝐴𝑥))
21sseq1d 3616 . 2 (𝑓 = 𝐴 → ((𝑓𝑥) ⊆ 𝐵 ↔ (𝐴𝑥) ⊆ 𝐵))
3 inf3lem.4 . . 3 𝐵 ∈ V
4 sseq2 3611 . . . . 5 (𝑣 = 𝐵 → ((𝑓𝑥) ⊆ 𝑣 ↔ (𝑓𝑥) ⊆ 𝐵))
54rabbidv 3182 . . . 4 (𝑣 = 𝐵 → {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵})
6 inf3lem.1 . . . . 5 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
7 sseq2 3611 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑤𝑥) ⊆ 𝑦 ↔ (𝑤𝑥) ⊆ 𝑣))
87rabbidv 3182 . . . . . . 7 (𝑦 = 𝑣 → {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦} = {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑣})
9 ineq1 3790 . . . . . . . . 9 (𝑤 = 𝑓 → (𝑤𝑥) = (𝑓𝑥))
109sseq1d 3616 . . . . . . . 8 (𝑤 = 𝑓 → ((𝑤𝑥) ⊆ 𝑣 ↔ (𝑓𝑥) ⊆ 𝑣))
1110cbvrabv 3190 . . . . . . 7 {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑣} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣}
128, 11syl6eq 2676 . . . . . 6 (𝑦 = 𝑣 → {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦} = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
1312cbvmptv 4715 . . . . 5 (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦}) = (𝑣 ∈ V ↦ {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
146, 13eqtri 2648 . . . 4 𝐺 = (𝑣 ∈ V ↦ {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝑣})
15 vex 3194 . . . . 5 𝑥 ∈ V
1615rabex 4778 . . . 4 {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵} ∈ V
175, 14, 16fvmpt 6240 . . 3 (𝐵 ∈ V → (𝐺𝐵) = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵})
183, 17ax-mp 5 . 2 (𝐺𝐵) = {𝑓𝑥 ∣ (𝑓𝑥) ⊆ 𝐵}
192, 18elrab2 3353 1 (𝐴 ∈ (𝐺𝐵) ↔ (𝐴𝑥 ∧ (𝐴𝑥) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1992  {crab 2916  Vcvv 3191  cin 3559  wss 3560  c0 3896  cmpt 4678  cres 5081  cfv 5850  ωcom 7013  reccrdg 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5813  df-fun 5852  df-fv 5858
This theorem is referenced by:  inf3lemd  8469  inf3lem1  8470  inf3lem2  8471  inf3lem3  8472
  Copyright terms: Public domain W3C validator