MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lemd Structured version   Visualization version   GIF version

Theorem inf3lemd 9084
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9092 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lemd (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lemd
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6664 . . . . 5 (𝐴 = ∅ → (𝐹𝐴) = (𝐹‘∅))
2 inf3lem.1 . . . . . 6 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
3 inf3lem.2 . . . . . 6 𝐹 = (rec(𝐺, ∅) ↾ ω)
4 inf3lem.3 . . . . . 6 𝐴 ∈ V
5 inf3lem.4 . . . . . 6 𝐵 ∈ V
62, 3, 4, 5inf3lemb 9082 . . . . 5 (𝐹‘∅) = ∅
71, 6syl6eq 2872 . . . 4 (𝐴 = ∅ → (𝐹𝐴) = ∅)
8 0ss 4349 . . . 4 ∅ ⊆ 𝑥
97, 8eqsstrdi 4020 . . 3 (𝐴 = ∅ → (𝐹𝐴) ⊆ 𝑥)
109a1d 25 . 2 (𝐴 = ∅ → (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥))
11 nnsuc 7591 . . . 4 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑣 ∈ ω 𝐴 = suc 𝑣)
12 vex 3497 . . . . . . . . . 10 𝑣 ∈ V
132, 3, 12, 5inf3lemc 9083 . . . . . . . . 9 (𝑣 ∈ ω → (𝐹‘suc 𝑣) = (𝐺‘(𝐹𝑣)))
1413eleq2d 2898 . . . . . . . 8 (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) ↔ 𝑢 ∈ (𝐺‘(𝐹𝑣))))
15 vex 3497 . . . . . . . . . 10 𝑢 ∈ V
16 fvex 6677 . . . . . . . . . 10 (𝐹𝑣) ∈ V
172, 3, 15, 16inf3lema 9081 . . . . . . . . 9 (𝑢 ∈ (𝐺‘(𝐹𝑣)) ↔ (𝑢𝑥 ∧ (𝑢𝑥) ⊆ (𝐹𝑣)))
1817simplbi 500 . . . . . . . 8 (𝑢 ∈ (𝐺‘(𝐹𝑣)) → 𝑢𝑥)
1914, 18syl6bi 255 . . . . . . 7 (𝑣 ∈ ω → (𝑢 ∈ (𝐹‘suc 𝑣) → 𝑢𝑥))
2019ssrdv 3972 . . . . . 6 (𝑣 ∈ ω → (𝐹‘suc 𝑣) ⊆ 𝑥)
21 fveq2 6664 . . . . . . 7 (𝐴 = suc 𝑣 → (𝐹𝐴) = (𝐹‘suc 𝑣))
2221sseq1d 3997 . . . . . 6 (𝐴 = suc 𝑣 → ((𝐹𝐴) ⊆ 𝑥 ↔ (𝐹‘suc 𝑣) ⊆ 𝑥))
2320, 22syl5ibrcom 249 . . . . 5 (𝑣 ∈ ω → (𝐴 = suc 𝑣 → (𝐹𝐴) ⊆ 𝑥))
2423rexlimiv 3280 . . . 4 (∃𝑣 ∈ ω 𝐴 = suc 𝑣 → (𝐹𝐴) ⊆ 𝑥)
2511, 24syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (𝐹𝐴) ⊆ 𝑥)
2625expcom 416 . 2 (𝐴 ≠ ∅ → (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥))
2710, 26pm2.61ine 3100 1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wrex 3139  {crab 3142  Vcvv 3494  cin 3934  wss 3935  c0 4290  cmpt 5138  cres 5551  suc csuc 6187  cfv 6349  ωcom 7574  reccrdg 8039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040
This theorem is referenced by:  inf3lem2  9086  inf3lem3  9087  inf3lem6  9090
  Copyright terms: Public domain W3C validator