![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infcda | Structured version Visualization version GIF version |
Description: The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infcda | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unnum 9060 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ∪ 𝐵) ∈ dom card) | |
2 | 1 | 3adant3 1101 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ∪ 𝐵) ∈ dom card) |
3 | ssun2 3810 | . . . . . 6 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
4 | ssdomg 8043 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) ∈ dom card → (𝐵 ⊆ (𝐴 ∪ 𝐵) → 𝐵 ≼ (𝐴 ∪ 𝐵))) | |
5 | 2, 3, 4 | mpisyl 21 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐵 ≼ (𝐴 ∪ 𝐵)) |
6 | cdadom2 9047 | . . . . 5 ⊢ (𝐵 ≼ (𝐴 ∪ 𝐵) → (𝐴 +𝑐 𝐵) ≼ (𝐴 +𝑐 (𝐴 ∪ 𝐵))) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≼ (𝐴 +𝑐 (𝐴 ∪ 𝐵))) |
8 | cdacomen 9041 | . . . 4 ⊢ (𝐴 +𝑐 (𝐴 ∪ 𝐵)) ≈ ((𝐴 ∪ 𝐵) +𝑐 𝐴) | |
9 | domentr 8056 | . . . 4 ⊢ (((𝐴 +𝑐 𝐵) ≼ (𝐴 +𝑐 (𝐴 ∪ 𝐵)) ∧ (𝐴 +𝑐 (𝐴 ∪ 𝐵)) ≈ ((𝐴 ∪ 𝐵) +𝑐 𝐴)) → (𝐴 +𝑐 𝐵) ≼ ((𝐴 ∪ 𝐵) +𝑐 𝐴)) | |
10 | 7, 8, 9 | sylancl 695 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≼ ((𝐴 ∪ 𝐵) +𝑐 𝐴)) |
11 | simp3 1083 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴) | |
12 | ssun1 3809 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
13 | ssdomg 8043 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) ∈ dom card → (𝐴 ⊆ (𝐴 ∪ 𝐵) → 𝐴 ≼ (𝐴 ∪ 𝐵))) | |
14 | 2, 12, 13 | mpisyl 21 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (𝐴 ∪ 𝐵)) |
15 | domtr 8050 | . . . . 5 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ∪ 𝐵)) → ω ≼ (𝐴 ∪ 𝐵)) | |
16 | 11, 14, 15 | syl2anc 694 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ (𝐴 ∪ 𝐵)) |
17 | infcdaabs 9066 | . . . 4 ⊢ (((𝐴 ∪ 𝐵) ∈ dom card ∧ ω ≼ (𝐴 ∪ 𝐵) ∧ 𝐴 ≼ (𝐴 ∪ 𝐵)) → ((𝐴 ∪ 𝐵) +𝑐 𝐴) ≈ (𝐴 ∪ 𝐵)) | |
18 | 2, 16, 14, 17 | syl3anc 1366 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∪ 𝐵) +𝑐 𝐴) ≈ (𝐴 ∪ 𝐵)) |
19 | domentr 8056 | . . 3 ⊢ (((𝐴 +𝑐 𝐵) ≼ ((𝐴 ∪ 𝐵) +𝑐 𝐴) ∧ ((𝐴 ∪ 𝐵) +𝑐 𝐴) ≈ (𝐴 ∪ 𝐵)) → (𝐴 +𝑐 𝐵) ≼ (𝐴 ∪ 𝐵)) | |
20 | 10, 18, 19 | syl2anc 694 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≼ (𝐴 ∪ 𝐵)) |
21 | uncdadom 9031 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) | |
22 | 21 | 3adant3 1101 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) |
23 | sbth 8121 | . 2 ⊢ (((𝐴 +𝑐 𝐵) ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ 𝐵)) | |
24 | 20, 22, 23 | syl2anc 694 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 +𝑐 𝐵) ≈ (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1054 ∈ wcel 2030 ∪ cun 3605 ⊆ wss 3607 class class class wbr 4685 dom cdm 5143 (class class class)co 6690 ωcom 7107 ≈ cen 7994 ≼ cdom 7995 cardccrd 8799 +𝑐 ccda 9027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-oi 8456 df-card 8803 df-cda 9028 |
This theorem is referenced by: alephadd 9437 |
Copyright terms: Public domain | W3C validator |