MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcllem Structured version   Visualization version   GIF version

Theorem infcllem 8338
Description: Lemma for infcl 8339, inflb 8340, infglb 8341, etc. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infcllem (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem infcllem
StepHypRef Expression
1 infcl.2 . 2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
2 vex 3194 . . . . . . . 8 𝑥 ∈ V
3 vex 3194 . . . . . . . 8 𝑦 ∈ V
42, 3brcnv 5270 . . . . . . 7 (𝑥𝑅𝑦𝑦𝑅𝑥)
54bicomi 214 . . . . . 6 (𝑦𝑅𝑥𝑥𝑅𝑦)
65notbii 310 . . . . 5 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)
76ralbii 2979 . . . 4 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
83, 2brcnv 5270 . . . . . . 7 (𝑦𝑅𝑥𝑥𝑅𝑦)
98bicomi 214 . . . . . 6 (𝑥𝑅𝑦𝑦𝑅𝑥)
10 vex 3194 . . . . . . . . 9 𝑧 ∈ V
113, 10brcnv 5270 . . . . . . . 8 (𝑦𝑅𝑧𝑧𝑅𝑦)
1211bicomi 214 . . . . . . 7 (𝑧𝑅𝑦𝑦𝑅𝑧)
1312rexbii 3039 . . . . . 6 (∃𝑧𝐵 𝑧𝑅𝑦 ↔ ∃𝑧𝐵 𝑦𝑅𝑧)
149, 13imbi12i 340 . . . . 5 ((𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1514ralbii 2979 . . . 4 (∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
167, 15anbi12i 732 . . 3 ((∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
1716rexbii 3039 . 2 (∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) ↔ ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
181, 17sylib 208 1 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wral 2912  wrex 2913   class class class wbr 4618   Or wor 4999  ccnv 5078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-cnv 5087
This theorem is referenced by:  infcl  8339  inflb  8340  infglb  8341  infglbb  8342  infiso  8358
  Copyright terms: Public domain W3C validator