![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infcntss | Structured version Visualization version GIF version |
Description: Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
infcntss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
infcntss | ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcntss.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | domen 8010 | . 2 ⊢ (ω ≼ 𝐴 ↔ ∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
3 | ensym 8046 | . . . . 5 ⊢ (ω ≈ 𝑥 → 𝑥 ≈ ω) | |
4 | 3 | anim2i 592 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ ω ≈ 𝑥) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
5 | 4 | ancoms 468 | . . 3 ⊢ ((ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
6 | 5 | eximi 1802 | . 2 ⊢ (∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
7 | 2, 6 | sylbi 207 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1744 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 class class class wbr 4685 ωcom 7107 ≈ cen 7994 ≼ cdom 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-er 7787 df-en 7998 df-dom 7999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |