MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif2 Structured version   Visualization version   GIF version

Theorem infdif2 8992
Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))

Proof of Theorem infdif2
StepHypRef Expression
1 domnsym 8046 . . . . . . 7 ((𝐴𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ (𝐴𝐵))
2 simp3 1061 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
3 infdif 8991 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
43ensymd 7967 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≈ (𝐴𝐵))
5 sdomentr 8054 . . . . . . . 8 ((𝐵𝐴𝐴 ≈ (𝐴𝐵)) → 𝐵 ≺ (𝐴𝐵))
62, 4, 5syl2anc 692 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ≺ (𝐴𝐵))
71, 6nsyl3 133 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ¬ (𝐴𝐵) ≼ 𝐵)
873expia 1264 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵𝐴 → ¬ (𝐴𝐵) ≼ 𝐵))
983adant2 1078 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵𝐴 → ¬ (𝐴𝐵) ≼ 𝐵))
109con2d 129 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵 → ¬ 𝐵𝐴))
11 domtri2 8775 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
12113adant3 1079 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1310, 12sylibrd 249 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))
14 simp1 1059 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
15 difss 3721 . . . 4 (𝐴𝐵) ⊆ 𝐴
16 ssdomg 7961 . . . 4 (𝐴 ∈ dom card → ((𝐴𝐵) ⊆ 𝐴 → (𝐴𝐵) ≼ 𝐴))
1714, 15, 16mpisyl 21 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ 𝐴)
18 domtr 7969 . . . 4 (((𝐴𝐵) ≼ 𝐴𝐴𝐵) → (𝐴𝐵) ≼ 𝐵)
1918ex 450 . . 3 ((𝐴𝐵) ≼ 𝐴 → (𝐴𝐵 → (𝐴𝐵) ≼ 𝐵))
2017, 19syl 17 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵 → (𝐴𝐵) ≼ 𝐵))
2113, 20impbid 202 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1036  wcel 1987  cdif 3557  wss 3560   class class class wbr 4623  dom cdm 5084  ωcom 7027  cen 7912  cdom 7913  csdm 7914  cardccrd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-oi 8375  df-card 8725  df-cda 8950
This theorem is referenced by:  axgroth3  9613
  Copyright terms: Public domain W3C validator