Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif2 Structured version   Visualization version   GIF version

Theorem infdif2 8992
 Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))

Proof of Theorem infdif2
StepHypRef Expression
1 domnsym 8046 . . . . . . 7 ((𝐴𝐵) ≼ 𝐵 → ¬ 𝐵 ≺ (𝐴𝐵))
2 simp3 1061 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
3 infdif 8991 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
43ensymd 7967 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≈ (𝐴𝐵))
5 sdomentr 8054 . . . . . . . 8 ((𝐵𝐴𝐴 ≈ (𝐴𝐵)) → 𝐵 ≺ (𝐴𝐵))
62, 4, 5syl2anc 692 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ≺ (𝐴𝐵))
71, 6nsyl3 133 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ¬ (𝐴𝐵) ≼ 𝐵)
873expia 1264 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵𝐴 → ¬ (𝐴𝐵) ≼ 𝐵))
983adant2 1078 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐵𝐴 → ¬ (𝐴𝐵) ≼ 𝐵))
109con2d 129 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵 → ¬ 𝐵𝐴))
11 domtri2 8775 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
12113adant3 1079 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1310, 12sylibrd 249 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))
14 simp1 1059 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
15 difss 3721 . . . 4 (𝐴𝐵) ⊆ 𝐴
16 ssdomg 7961 . . . 4 (𝐴 ∈ dom card → ((𝐴𝐵) ⊆ 𝐴 → (𝐴𝐵) ≼ 𝐴))
1714, 15, 16mpisyl 21 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ 𝐴)
18 domtr 7969 . . . 4 (((𝐴𝐵) ≼ 𝐴𝐴𝐵) → (𝐴𝐵) ≼ 𝐵)
1918ex 450 . . 3 ((𝐴𝐵) ≼ 𝐴 → (𝐴𝐵 → (𝐴𝐵) ≼ 𝐵))
2017, 19syl 17 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵 → (𝐴𝐵) ≼ 𝐵))
2113, 20impbid 202 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ≼ 𝐵𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ w3a 1036   ∈ wcel 1987   ∖ cdif 3557   ⊆ wss 3560   class class class wbr 4623  dom cdm 5084  ωcom 7027   ≈ cen 7912   ≼ cdom 7913   ≺ csdm 7914  cardccrd 8721 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-oi 8375  df-card 8725  df-cda 8950 This theorem is referenced by:  axgroth3  9613
 Copyright terms: Public domain W3C validator