MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdifsn Structured version   Visualization version   GIF version

Theorem infdifsn 8501
Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infdifsn (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴)

Proof of Theorem infdifsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brdomi 7913 . . . 4 (ω ≼ 𝐴 → ∃𝑓 𝑓:ω–1-1𝐴)
21adantr 481 . . 3 ((ω ≼ 𝐴𝐵𝐴) → ∃𝑓 𝑓:ω–1-1𝐴)
3 reldom 7908 . . . . . . 7 Rel ≼
43brrelex2i 5121 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
54ad2antrr 761 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐴 ∈ V)
6 simplr 791 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐵𝐴)
7 f1f 6060 . . . . . . 7 (𝑓:ω–1-1𝐴𝑓:ω⟶𝐴)
87adantl 482 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω⟶𝐴)
9 peano1 7035 . . . . . 6 ∅ ∈ ω
10 ffvelrn 6315 . . . . . 6 ((𝑓:ω⟶𝐴 ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ 𝐴)
118, 9, 10sylancl 693 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ 𝐴)
12 difsnen 7989 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐴 ∧ (𝑓‘∅) ∈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}))
135, 6, 11, 12syl3anc 1323 . . . 4 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}))
14 vex 3189 . . . . . . . . . 10 𝑓 ∈ V
15 f1f1orn 6107 . . . . . . . . . . 11 (𝑓:ω–1-1𝐴𝑓:ω–1-1-onto→ran 𝑓)
1615adantl 482 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1-onto→ran 𝑓)
17 f1oen3g 7918 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:ω–1-1-onto→ran 𝑓) → ω ≈ ran 𝑓)
1814, 16, 17sylancr 694 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ ran 𝑓)
1918ensymd 7954 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓 ≈ ω)
203brrelexi 5120 . . . . . . . . . . 11 (ω ≼ 𝐴 → ω ∈ V)
2120ad2antrr 761 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ∈ V)
22 limom 7030 . . . . . . . . . . 11 Lim ω
2322limenpsi 8082 . . . . . . . . . 10 (ω ∈ V → ω ≈ (ω ∖ {∅}))
2421, 23syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ (ω ∖ {∅}))
2514resex 5404 . . . . . . . . . . 11 (𝑓 ↾ (ω ∖ {∅})) ∈ V
26 simpr 477 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓:ω–1-1𝐴)
27 difss 3717 . . . . . . . . . . . 12 (ω ∖ {∅}) ⊆ ω
28 f1ores 6110 . . . . . . . . . . . 12 ((𝑓:ω–1-1𝐴 ∧ (ω ∖ {∅}) ⊆ ω) → (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅})))
2926, 27, 28sylancl 693 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅})))
30 f1oen3g 7918 . . . . . . . . . . 11 (((𝑓 ↾ (ω ∖ {∅})) ∈ V ∧ (𝑓 ↾ (ω ∖ {∅})):(ω ∖ {∅})–1-1-onto→(𝑓 “ (ω ∖ {∅}))) → (ω ∖ {∅}) ≈ (𝑓 “ (ω ∖ {∅})))
3125, 29, 30sylancr 694 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ω ∖ {∅}) ≈ (𝑓 “ (ω ∖ {∅})))
32 f1orn 6106 . . . . . . . . . . . . 13 (𝑓:ω–1-1-onto→ran 𝑓 ↔ (𝑓 Fn ω ∧ Fun 𝑓))
3332simprbi 480 . . . . . . . . . . . 12 (𝑓:ω–1-1-onto→ran 𝑓 → Fun 𝑓)
34 imadif 5933 . . . . . . . . . . . 12 (Fun 𝑓 → (𝑓 “ (ω ∖ {∅})) = ((𝑓 “ ω) ∖ (𝑓 “ {∅})))
3516, 33, 343syl 18 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ (ω ∖ {∅})) = ((𝑓 “ ω) ∖ (𝑓 “ {∅})))
36 f1fn 6061 . . . . . . . . . . . . . 14 (𝑓:ω–1-1𝐴𝑓 Fn ω)
3736adantl 482 . . . . . . . . . . . . 13 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝑓 Fn ω)
38 fnima 5969 . . . . . . . . . . . . 13 (𝑓 Fn ω → (𝑓 “ ω) = ran 𝑓)
3937, 38syl 17 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ ω) = ran 𝑓)
40 fnsnfv 6217 . . . . . . . . . . . . . 14 ((𝑓 Fn ω ∧ ∅ ∈ ω) → {(𝑓‘∅)} = (𝑓 “ {∅}))
4137, 9, 40sylancl 693 . . . . . . . . . . . . 13 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → {(𝑓‘∅)} = (𝑓 “ {∅}))
4241eqcomd 2627 . . . . . . . . . . . 12 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ {∅}) = {(𝑓‘∅)})
4339, 42difeq12d 3709 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝑓 “ ω) ∖ (𝑓 “ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)}))
4435, 43eqtrd 2655 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓 “ (ω ∖ {∅})) = (ran 𝑓 ∖ {(𝑓‘∅)}))
4531, 44breqtrd 4641 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ω ∖ {∅}) ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
46 entr 7955 . . . . . . . . 9 ((ω ≈ (ω ∖ {∅}) ∧ (ω ∖ {∅}) ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
4724, 45, 46syl2anc 692 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
48 entr 7955 . . . . . . . 8 ((ran 𝑓 ≈ ω ∧ ω ≈ (ran 𝑓 ∖ {(𝑓‘∅)})) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
4919, 47, 48syl2anc 692 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}))
50 difexg 4770 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∖ ran 𝑓) ∈ V)
51 enrefg 7934 . . . . . . . 8 ((𝐴 ∖ ran 𝑓) ∈ V → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓))
525, 50, 513syl 18 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓))
53 disjdif 4014 . . . . . . . 8 (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅
5453a1i 11 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅)
55 difss 3717 . . . . . . . . . 10 (ran 𝑓 ∖ {(𝑓‘∅)}) ⊆ ran 𝑓
56 ssrin 3818 . . . . . . . . . 10 ((ran 𝑓 ∖ {(𝑓‘∅)}) ⊆ ran 𝑓 → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)))
5755, 56ax-mp 5 . . . . . . . . 9 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓))
58 sseq0 3949 . . . . . . . . 9 ((((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) ⊆ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)
5957, 53, 58mp2an 707 . . . . . . . 8 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅
6059a1i 11 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)
61 unen 7987 . . . . . . 7 (((ran 𝑓 ≈ (ran 𝑓 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ ran 𝑓) ≈ (𝐴 ∖ ran 𝑓)) ∧ ((ran 𝑓 ∩ (𝐴 ∖ ran 𝑓)) = ∅ ∧ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∩ (𝐴 ∖ ran 𝑓)) = ∅)) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)))
6249, 52, 54, 60, 61syl22anc 1324 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) ≈ ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)))
63 frn 6012 . . . . . . . 8 (𝑓:ω⟶𝐴 → ran 𝑓𝐴)
648, 63syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ran 𝑓𝐴)
65 undif 4023 . . . . . . 7 (ran 𝑓𝐴 ↔ (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴)
6664, 65sylib 208 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓)) = 𝐴)
67 uncom 3737 . . . . . . 7 ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)}))
68 eldifn 3713 . . . . . . . . . . 11 ((𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓) → ¬ (𝑓‘∅) ∈ ran 𝑓)
69 fnfvelrn 6314 . . . . . . . . . . . 12 ((𝑓 Fn ω ∧ ∅ ∈ ω) → (𝑓‘∅) ∈ ran 𝑓)
7037, 9, 69sylancl 693 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝑓‘∅) ∈ ran 𝑓)
7168, 70nsyl3 133 . . . . . . . . . 10 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓))
72 disjsn 4218 . . . . . . . . . 10 (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ ↔ ¬ (𝑓‘∅) ∈ (𝐴 ∖ ran 𝑓))
7371, 72sylibr 224 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅)
74 undif4 4009 . . . . . . . . 9 (((𝐴 ∖ ran 𝑓) ∩ {(𝑓‘∅)}) = ∅ → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}))
7573, 74syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}))
76 uncom 3737 . . . . . . . . . 10 ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = (ran 𝑓 ∪ (𝐴 ∖ ran 𝑓))
7776, 66syl5eq 2667 . . . . . . . . 9 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) = 𝐴)
7877difeq1d 3707 . . . . . . . 8 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (((𝐴 ∖ ran 𝑓) ∪ ran 𝑓) ∖ {(𝑓‘∅)}) = (𝐴 ∖ {(𝑓‘∅)}))
7975, 78eqtrd 2655 . . . . . . 7 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((𝐴 ∖ ran 𝑓) ∪ (ran 𝑓 ∖ {(𝑓‘∅)})) = (𝐴 ∖ {(𝑓‘∅)}))
8067, 79syl5eq 2667 . . . . . 6 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → ((ran 𝑓 ∖ {(𝑓‘∅)}) ∪ (𝐴 ∖ ran 𝑓)) = (𝐴 ∖ {(𝑓‘∅)}))
8162, 66, 803brtr3d 4646 . . . . 5 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → 𝐴 ≈ (𝐴 ∖ {(𝑓‘∅)}))
8281ensymd 7954 . . . 4 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴)
83 entr 7955 . . . 4 (((𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {(𝑓‘∅)}) ∧ (𝐴 ∖ {(𝑓‘∅)}) ≈ 𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
8413, 82, 83syl2anc 692 . . 3 (((ω ≼ 𝐴𝐵𝐴) ∧ 𝑓:ω–1-1𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
852, 84exlimddv 1860 . 2 ((ω ≼ 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
86 difsn 4299 . . . 4 𝐵𝐴 → (𝐴 ∖ {𝐵}) = 𝐴)
8786adantl 482 . . 3 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → (𝐴 ∖ {𝐵}) = 𝐴)
88 enrefg 7934 . . . . 5 (𝐴 ∈ V → 𝐴𝐴)
894, 88syl 17 . . . 4 (ω ≼ 𝐴𝐴𝐴)
9089adantr 481 . . 3 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → 𝐴𝐴)
9187, 90eqbrtrd 4637 . 2 ((ω ≼ 𝐴 ∧ ¬ 𝐵𝐴) → (𝐴 ∖ {𝐵}) ≈ 𝐴)
9285, 91pm2.61dan 831 1 (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  Vcvv 3186  cdif 3553  cun 3554  cin 3555  wss 3556  c0 3893  {csn 4150   class class class wbr 4615  ccnv 5075  ran crn 5077  cres 5078  cima 5079  Fun wfun 5843   Fn wfn 5844  wf 5845  1-1wf1 5846  1-1-ontowf1o 5848  cfv 5849  ωcom 7015  cen 7899  cdom 7900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-om 7016  df-1o 7508  df-er 7690  df-en 7903  df-dom 7904
This theorem is referenced by:  infdiffi  8502  infcda1  8962  infpss  8986
  Copyright terms: Public domain W3C validator