MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq5i Structured version   Visualization version   GIF version

Theorem infeq5i 9093
Description: Half of infeq5 9094. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
infeq5i (ω ∈ V → ∃𝑥 𝑥 𝑥)

Proof of Theorem infeq5i
StepHypRef Expression
1 difexg 5223 . 2 (ω ∈ V → (ω ∖ {∅}) ∈ V)
2 0ex 5203 . . . . 5 ∅ ∈ V
32snid 4594 . . . 4 ∅ ∈ {∅}
4 disj4 4407 . . . . . 6 ((ω ∩ {∅}) = ∅ ↔ ¬ (ω ∖ {∅}) ⊊ ω)
5 disj3 4402 . . . . . 6 ((ω ∩ {∅}) = ∅ ↔ ω = (ω ∖ {∅}))
64, 5bitr3i 279 . . . . 5 (¬ (ω ∖ {∅}) ⊊ ω ↔ ω = (ω ∖ {∅}))
7 peano1 7595 . . . . . . 7 ∅ ∈ ω
8 eleq2 2901 . . . . . . 7 (ω = (ω ∖ {∅}) → (∅ ∈ ω ↔ ∅ ∈ (ω ∖ {∅})))
97, 8mpbii 235 . . . . . 6 (ω = (ω ∖ {∅}) → ∅ ∈ (ω ∖ {∅}))
109eldifbd 3948 . . . . 5 (ω = (ω ∖ {∅}) → ¬ ∅ ∈ {∅})
116, 10sylbi 219 . . . 4 (¬ (ω ∖ {∅}) ⊊ ω → ¬ ∅ ∈ {∅})
123, 11mt4 116 . . 3 (ω ∖ {∅}) ⊊ ω
13 unidif0 5252 . . . . 5 (ω ∖ {∅}) = ω
14 limom 7589 . . . . . 6 Lim ω
15 limuni 6245 . . . . . 6 (Lim ω → ω = ω)
1614, 15ax-mp 5 . . . . 5 ω = ω
1713, 16eqtr4i 2847 . . . 4 (ω ∖ {∅}) = ω
1817psseq2i 4066 . . 3 ((ω ∖ {∅}) ⊊ (ω ∖ {∅}) ↔ (ω ∖ {∅}) ⊊ ω)
1912, 18mpbir 233 . 2 (ω ∖ {∅}) ⊊ (ω ∖ {∅})
20 psseq1 4063 . . . 4 (𝑥 = (ω ∖ {∅}) → (𝑥 𝑥 ↔ (ω ∖ {∅}) ⊊ 𝑥))
21 unieq 4839 . . . . 5 (𝑥 = (ω ∖ {∅}) → 𝑥 = (ω ∖ {∅}))
2221psseq2d 4069 . . . 4 (𝑥 = (ω ∖ {∅}) → ((ω ∖ {∅}) ⊊ 𝑥 ↔ (ω ∖ {∅}) ⊊ (ω ∖ {∅})))
2320, 22bitrd 281 . . 3 (𝑥 = (ω ∖ {∅}) → (𝑥 𝑥 ↔ (ω ∖ {∅}) ⊊ (ω ∖ {∅})))
2423spcegv 3596 . 2 ((ω ∖ {∅}) ∈ V → ((ω ∖ {∅}) ⊊ (ω ∖ {∅}) → ∃𝑥 𝑥 𝑥))
251, 19, 24mpisyl 21 1 (ω ∈ V → ∃𝑥 𝑥 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wex 1776  wcel 2110  Vcvv 3494  cdif 3932  cin 3934  wpss 3936  c0 4290  {csn 4560   cuni 4831  Lim wlim 6186  ωcom 7574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-tr 5165  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-om 7575
This theorem is referenced by:  infeq5  9094  inf5  9102
  Copyright terms: Public domain W3C validator