MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infex Structured version   Visualization version   GIF version

Theorem infex 8359
Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.)
Hypothesis
Ref Expression
infex.1 𝑅 Or 𝐴
Assertion
Ref Expression
infex inf(𝐵, 𝐴, 𝑅) ∈ V

Proof of Theorem infex
StepHypRef Expression
1 infex.1 . 2 𝑅 Or 𝐴
2 id 22 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
32infexd 8349 . 2 (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V)
41, 3ax-mp 5 1 inf(𝐵, 𝐴, 𝑅) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 1987  Vcvv 3190   Or wor 5004  infcinf 8307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rmo 2916  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-po 5005  df-so 5006  df-cnv 5092  df-sup 8308  df-inf 8309
This theorem is referenced by:  limsupval  14155  lcmval  15248  odzval  15439  ramval  15655  imasdsfn  16114  imasdsval  16115  odval  17893  odf  17896  gexval  17933  nmoval  22459  metdsval  22590  ovolval  23182  ovolf  23190  elqaalem1  24012  elqaalem3  24014  ballotlemi  30385  pellfundval  36963  dgraaval  37234  dgraaf  37237  ovnval2  40096
  Copyright terms: Public domain W3C validator