Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infglb Structured version   Visualization version   GIF version

Theorem infglb 8437
 Description: An infimum is the greatest lower bound. See also infcl 8435 and inflb 8436. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
infglb (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem infglb
StepHypRef Expression
1 df-inf 8390 . . . . 5 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
21breq1i 4692 . . . 4 (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
3 simpr 476 . . . . 5 ((𝜑𝐶𝐴) → 𝐶𝐴)
4 infcl.1 . . . . . . . 8 (𝜑𝑅 Or 𝐴)
5 cnvso 5712 . . . . . . . 8 (𝑅 Or 𝐴𝑅 Or 𝐴)
64, 5sylib 208 . . . . . . 7 (𝜑𝑅 Or 𝐴)
7 infcl.2 . . . . . . . 8 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
84, 7infcllem 8434 . . . . . . 7 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
96, 8supcl 8405 . . . . . 6 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
109adantr 480 . . . . 5 ((𝜑𝐶𝐴) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
11 brcnvg 5335 . . . . . 6 ((𝐶𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
1211bicomd 213 . . . . 5 ((𝐶𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
133, 10, 12syl2anc 694 . . . 4 ((𝜑𝐶𝐴) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
142, 13syl5bb 272 . . 3 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
156, 8suplub 8407 . . . . 5 (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
1615expdimp 452 . . . 4 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧))
17 vex 3234 . . . . . 6 𝑧 ∈ V
18 brcnvg 5335 . . . . . 6 ((𝐶𝐴𝑧 ∈ V) → (𝐶𝑅𝑧𝑧𝑅𝐶))
193, 17, 18sylancl 695 . . . . 5 ((𝜑𝐶𝐴) → (𝐶𝑅𝑧𝑧𝑅𝐶))
2019rexbidv 3081 . . . 4 ((𝜑𝐶𝐴) → (∃𝑧𝐵 𝐶𝑅𝑧 ↔ ∃𝑧𝐵 𝑧𝑅𝐶))
2116, 20sylibd 229 . . 3 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝑧𝑅𝐶))
2214, 21sylbid 230 . 2 ((𝜑𝐶𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 → ∃𝑧𝐵 𝑧𝑅𝐶))
2322expimpd 628 1 (𝜑 → ((𝐶𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧𝐵 𝑧𝑅𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  Vcvv 3231   class class class wbr 4685   Or wor 5063  ◡ccnv 5142  supcsup 8387  infcinf 8388 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-po 5064  df-so 5065  df-cnv 5151  df-iota 5889  df-riota 6651  df-sup 8389  df-inf 8390 This theorem is referenced by:  infnlb  8439  omssubaddlem  30489  omssubadd  30490  gtinf  32438  infxrunb2  39897
 Copyright terms: Public domain W3C validator