Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinflem2 Structured version   Visualization version   GIF version

Theorem infleinflem2 39900
Description: Lemma for infleinf 39901, when inf(𝐵, ℝ*, < ) = -∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinflem2.a (𝜑𝐴 ⊆ ℝ*)
infleinflem2.b (𝜑𝐵 ⊆ ℝ*)
infleinflem2.r (𝜑𝑅 ∈ ℝ)
infleinflem2.x (𝜑𝑋𝐵)
infleinflem2.t (𝜑𝑋 < (𝑅 − 2))
infleinflem2.z (𝜑𝑍𝐴)
infleinflem2.l (𝜑𝑍 ≤ (𝑋 +𝑒 1))
Assertion
Ref Expression
infleinflem2 (𝜑𝑍 < 𝑅)

Proof of Theorem infleinflem2
StepHypRef Expression
1 infleinflem2.r . . . 4 (𝜑𝑅 ∈ ℝ)
21adantr 480 . . 3 ((𝜑𝑍 = -∞) → 𝑅 ∈ ℝ)
3 simpr 476 . . 3 ((𝜑𝑍 = -∞) → 𝑍 = -∞)
4 simpr 476 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → 𝑍 = -∞)
5 mnflt 11995 . . . . 5 (𝑅 ∈ ℝ → -∞ < 𝑅)
65adantr 480 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → -∞ < 𝑅)
74, 6eqbrtrd 4707 . . 3 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → 𝑍 < 𝑅)
82, 3, 7syl2anc 694 . 2 ((𝜑𝑍 = -∞) → 𝑍 < 𝑅)
9 simpl 472 . . 3 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝜑)
10 neqne 2831 . . . 4 𝑍 = -∞ → 𝑍 ≠ -∞)
1110adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝑍 ≠ -∞)
121adantr 480 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑅 ∈ ℝ)
13 id 22 . . . . . . . 8 (𝜑𝜑)
14 infleinflem2.x . . . . . . . 8 (𝜑𝑋𝐵)
15 infleinflem2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
1615sselda 3636 . . . . . . . 8 ((𝜑𝑋𝐵) → 𝑋 ∈ ℝ*)
1713, 14, 16syl2anc 694 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
1817adantr 480 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ∈ ℝ*)
19 infleinflem2.z . . . . . . . . . 10 (𝜑𝑍𝐴)
20 infleinflem2.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ*)
2120sselda 3636 . . . . . . . . . 10 ((𝜑𝑍𝐴) → 𝑍 ∈ ℝ*)
2213, 19, 21syl2anc 694 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ*)
2322adantr 480 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ∈ ℝ*)
24 simpr 476 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ≠ -∞)
25 pnfxr 10130 . . . . . . . . . . 11 +∞ ∈ ℝ*
2625a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
27 peano2rem 10386 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ → (𝑅 − 1) ∈ ℝ)
2827rexrd 10127 . . . . . . . . . . . 12 (𝑅 ∈ ℝ → (𝑅 − 1) ∈ ℝ*)
291, 28syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅 − 1) ∈ ℝ*)
3015, 14sseldd 3637 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ*)
31 id 22 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ*𝑋 ∈ ℝ*)
32 1re 10077 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
3332rexri 10135 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
3433a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ* → 1 ∈ ℝ*)
3531, 34xaddcld 12169 . . . . . . . . . . . . 13 (𝑋 ∈ ℝ* → (𝑋 +𝑒 1) ∈ ℝ*)
3630, 35syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 +𝑒 1) ∈ ℝ*)
37 infleinflem2.l . . . . . . . . . . . 12 (𝜑𝑍 ≤ (𝑋 +𝑒 1))
38 infleinflem2.t . . . . . . . . . . . . 13 (𝜑𝑋 < (𝑅 − 2))
39 oveq1 6697 . . . . . . . . . . . . . . . . . . 19 (𝑋 = -∞ → (𝑋 +𝑒 1) = (-∞ +𝑒 1))
40 renepnf 10125 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ ℝ → 1 ≠ +∞)
4132, 40ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 1 ≠ +∞
42 xaddmnf2 12098 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
4333, 41, 42mp2an 708 . . . . . . . . . . . . . . . . . . . 20 (-∞ +𝑒 1) = -∞
4443a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑋 = -∞ → (-∞ +𝑒 1) = -∞)
4539, 44eqtrd 2685 . . . . . . . . . . . . . . . . . 18 (𝑋 = -∞ → (𝑋 +𝑒 1) = -∞)
4645adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) = -∞)
4727mnfltd 11996 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ → -∞ < (𝑅 − 1))
4847adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → -∞ < (𝑅 − 1))
4946, 48eqbrtrd 4707 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
5049adantlr 751 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*) ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
51503adantl3 1239 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
52 simpl 472 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → (𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)))
53 simpl2 1085 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ∈ ℝ*)
54 neqne 2831 . . . . . . . . . . . . . . . . 17 𝑋 = -∞ → 𝑋 ≠ -∞)
5554adantl 481 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ≠ -∞)
56 simp2 1082 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 ∈ ℝ*)
5725a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → +∞ ∈ ℝ*)
58 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ)
59 2re 11128 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
6059a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ → 2 ∈ ℝ)
6158, 60resubcld 10496 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → (𝑅 − 2) ∈ ℝ)
6261rexrd 10127 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅 − 2) ∈ ℝ*)
63623ad2ant1 1102 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑅 − 2) ∈ ℝ*)
64 simp3 1083 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 < (𝑅 − 2))
6561ltpnfd 11993 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅 − 2) < +∞)
66653ad2ant1 1102 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑅 − 2) < +∞)
6756, 63, 57, 64, 66xrlttrd 12028 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 < +∞)
6856, 57, 67xrltned 39886 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 ≠ +∞)
6968adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ≠ +∞)
7053, 55, 69xrred 39894 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ∈ ℝ)
71 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ)
7271ad2antlr 763 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 𝑋 ∈ ℝ)
7361ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑅 − 2) ∈ ℝ)
74 1red 10093 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℝ → 1 ∈ ℝ)
7572, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 1 ∈ ℝ)
76 simpr 476 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 𝑋 < (𝑅 − 2))
7772, 73, 75, 76ltadd1dd 10676 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 + 1) < ((𝑅 − 2) + 1))
78 recn 10064 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
79 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 𝑅 ∈ ℂ)
80 2cnd 11131 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 2 ∈ ℂ)
81 1cnd 10094 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 1 ∈ ℂ)
8279, 80, 81subsubd 10458 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℂ → (𝑅 − (2 − 1)) = ((𝑅 − 2) + 1))
83 2m1e1 11173 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 − 1) = 1
8483oveq2i 6701 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 − (2 − 1)) = (𝑅 − 1)
8584a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℂ → (𝑅 − (2 − 1)) = (𝑅 − 1))
8682, 85eqtr3d 2687 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℂ → ((𝑅 − 2) + 1) = (𝑅 − 1))
8778, 86syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → ((𝑅 − 2) + 1) = (𝑅 − 1))
8887ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → ((𝑅 − 2) + 1) = (𝑅 − 1))
8977, 88breqtrd 4711 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 + 1) < (𝑅 − 1))
9071, 74rexaddd 12103 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ ℝ → (𝑋 +𝑒 1) = (𝑋 + 1))
9190breq1d 4695 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ → ((𝑋 +𝑒 1) < (𝑅 − 1) ↔ (𝑋 + 1) < (𝑅 − 1)))
9291ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → ((𝑋 +𝑒 1) < (𝑅 − 1) ↔ (𝑋 + 1) < (𝑅 − 1)))
9389, 92mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 +𝑒 1) < (𝑅 − 1))
9493an32s 863 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑋 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
95943adantl2 1238 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ 𝑋 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
9652, 70, 95syl2anc 694 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
9751, 96pm2.61dan 849 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑋 +𝑒 1) < (𝑅 − 1))
981, 30, 38, 97syl3anc 1366 . . . . . . . . . . . 12 (𝜑 → (𝑋 +𝑒 1) < (𝑅 − 1))
9922, 36, 29, 37, 98xrlelttrd 12029 . . . . . . . . . . 11 (𝜑𝑍 < (𝑅 − 1))
10027ltpnfd 11993 . . . . . . . . . . . 12 (𝑅 ∈ ℝ → (𝑅 − 1) < +∞)
1011, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅 − 1) < +∞)
10222, 29, 26, 99, 101xrlttrd 12028 . . . . . . . . . 10 (𝜑𝑍 < +∞)
10322, 26, 102xrltned 39886 . . . . . . . . 9 (𝜑𝑍 ≠ +∞)
104103adantr 480 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ≠ +∞)
10523, 24, 104xrred 39894 . . . . . . 7 ((𝜑𝑍 ≠ -∞) → 𝑍 ∈ ℝ)
10637adantr 480 . . . . . . 7 ((𝜑𝑍 ≠ -∞) → 𝑍 ≤ (𝑋 +𝑒 1))
107 simpl3 1086 . . . . . . . . 9 (((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) ∧ 𝑋 = -∞) → 𝑍 ≤ (𝑋 +𝑒 1))
10845adantl 481 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) = -∞)
109 mnflt 11995 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → -∞ < 𝑍)
110109adantr 480 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → -∞ < 𝑍)
111108, 110eqbrtrd 4707 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < 𝑍)
112 mnfxr 10134 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
113108, 112syl6eqel 2738 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) ∈ ℝ*)
114 rexr 10123 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → 𝑍 ∈ ℝ*)
115114adantr 480 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → 𝑍 ∈ ℝ*)
116113, 115xrltnled 39892 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → ((𝑋 +𝑒 1) < 𝑍 ↔ ¬ 𝑍 ≤ (𝑋 +𝑒 1)))
117111, 116mpbid 222 . . . . . . . . . 10 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → ¬ 𝑍 ≤ (𝑋 +𝑒 1))
1181173ad2antl1 1243 . . . . . . . . 9 (((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) ∧ 𝑋 = -∞) → ¬ 𝑍 ≤ (𝑋 +𝑒 1))
119107, 118pm2.65da 599 . . . . . . . 8 ((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) → ¬ 𝑋 = -∞)
120119neqned 2830 . . . . . . 7 ((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) → 𝑋 ≠ -∞)
121105, 18, 106, 120syl3anc 1366 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ≠ -∞)
1221, 17, 38, 68syl3anc 1366 . . . . . . 7 (𝜑𝑋 ≠ +∞)
123122adantr 480 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ≠ +∞)
12418, 121, 123xrred 39894 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑋 ∈ ℝ)
12538adantr 480 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑋 < (𝑅 − 2))
12612, 124, 125jca31 556 . . . 4 ((𝜑𝑍 ≠ -∞) → ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)))
127 simplr 807 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 ∈ ℝ)
128 simp-4r 824 . . . . . 6 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑋 ∈ ℝ)
12971, 74readdcld 10107 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 + 1) ∈ ℝ)
13090, 129eqeltrd 2730 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 +𝑒 1) ∈ ℝ)
131128, 130syl 17 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → (𝑋 +𝑒 1) ∈ ℝ)
13258ad4antr 769 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑅 ∈ ℝ)
133 simpr 476 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 ≤ (𝑋 +𝑒 1))
134130ad3antlr 767 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) ∈ ℝ)
13527ad3antrrr 766 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑅 − 1) ∈ ℝ)
13658ad3antrrr 766 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → 𝑅 ∈ ℝ)
13793adantr 480 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
138136ltm1d 10994 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑅 − 1) < 𝑅)
139134, 135, 136, 137, 138lttrd 10236 . . . . . 6 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) < 𝑅)
140139adantr 480 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → (𝑋 +𝑒 1) < 𝑅)
141127, 131, 132, 133, 140lelttrd 10233 . . . 4 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 < 𝑅)
142126, 105, 106, 141syl21anc 1365 . . 3 ((𝜑𝑍 ≠ -∞) → 𝑍 < 𝑅)
1439, 11, 142syl2anc 694 . 2 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝑍 < 𝑅)
1448, 143pm2.61dan 849 1 (𝜑𝑍 < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wss 3607   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  1c1 9975   + caddc 9977  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  cmin 10304  2c2 11108   +𝑒 cxad 11982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-2 11117  df-xadd 11985
This theorem is referenced by:  infleinf  39901
  Copyright terms: Public domain W3C validator