Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infnsuprnmpt Structured version   Visualization version   GIF version

Theorem infnsuprnmpt 41515
Description: The indexed infimum of real numbers is the negative of the indexed supremum of the negative values. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infnsuprnmpt.x 𝑥𝜑
infnsuprnmpt.a (𝜑𝐴 ≠ ∅)
infnsuprnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
infnsuprnmpt.l (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
Assertion
Ref Expression
infnsuprnmpt (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem infnsuprnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infnsuprnmpt.x . . . 4 𝑥𝜑
2 eqid 2821 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 infnsuprnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 41451 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 infnsuprnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 41477 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 infnsuprnmpt.l . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
87rnmptlb 41507 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧)
9 infrenegsup 11618 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑦𝑧) → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
104, 6, 8, 9syl3anc 1367 . 2 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ))
11 eqid 2821 . . . . . . . . 9 (𝑥𝐴 ↦ -𝐵) = (𝑥𝐴 ↦ -𝐵)
12 rabidim2 41361 . . . . . . . . . . . 12 (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} → -𝑤 ∈ ran (𝑥𝐴𝐵))
1312adantl 484 . . . . . . . . . . 11 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → -𝑤 ∈ ran (𝑥𝐴𝐵))
14 negex 10878 . . . . . . . . . . . 12 -𝑤 ∈ V
152elrnmpt 5822 . . . . . . . . . . . 12 (-𝑤 ∈ V → (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵))
1614, 15ax-mp 5 . . . . . . . . . . 11 (-𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑤 = 𝐵)
1713, 16sylib 220 . . . . . . . . . 10 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → ∃𝑥𝐴 -𝑤 = 𝐵)
18 nfcv 2977 . . . . . . . . . . . . 13 𝑥𝑤
1918nfneg 10876 . . . . . . . . . . . . . . 15 𝑥-𝑤
20 nfmpt1 5156 . . . . . . . . . . . . . . . 16 𝑥(𝑥𝐴𝐵)
2120nfrn 5818 . . . . . . . . . . . . . . 15 𝑥ran (𝑥𝐴𝐵)
2219, 21nfel 2992 . . . . . . . . . . . . . 14 𝑥-𝑤 ∈ ran (𝑥𝐴𝐵)
23 nfcv 2977 . . . . . . . . . . . . . 14 𝑥
2422, 23nfrabw 3385 . . . . . . . . . . . . 13 𝑥{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
2518, 24nfel 2992 . . . . . . . . . . . 12 𝑥 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
261, 25nfan 1896 . . . . . . . . . . 11 𝑥(𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
27 rabidim1 3380 . . . . . . . . . . . . 13 (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} → 𝑤 ∈ ℝ)
2827adantl 484 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → 𝑤 ∈ ℝ)
29 negeq 10872 . . . . . . . . . . . . . . . 16 (-𝑤 = 𝐵 → --𝑤 = -𝐵)
3029eqcomd 2827 . . . . . . . . . . . . . . 15 (-𝑤 = 𝐵 → -𝐵 = --𝑤)
31303ad2ant3 1131 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → -𝐵 = --𝑤)
32 simp1r 1194 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → 𝑤 ∈ ℝ)
33 recn 10621 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
3433negnegd 10982 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℝ → --𝑤 = 𝑤)
3532, 34syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → --𝑤 = 𝑤)
3631, 35eqtr2d 2857 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴 ∧ -𝑤 = 𝐵) → 𝑤 = -𝐵)
37363exp 1115 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ℝ) → (𝑥𝐴 → (-𝑤 = 𝐵𝑤 = -𝐵)))
3828, 37syldan 593 . . . . . . . . . . 11 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → (𝑥𝐴 → (-𝑤 = 𝐵𝑤 = -𝐵)))
3926, 38reximdai 3311 . . . . . . . . . 10 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → (∃𝑥𝐴 -𝑤 = 𝐵 → ∃𝑥𝐴 𝑤 = -𝐵))
4017, 39mpd 15 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → ∃𝑥𝐴 𝑤 = -𝐵)
41 simpr 487 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
4211, 40, 41elrnmptd 41433 . . . . . . . 8 ((𝜑𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}) → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵))
4342ex 415 . . . . . . 7 (𝜑 → (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} → 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
44 vex 3497 . . . . . . . . . . . . 13 𝑤 ∈ V
4511elrnmpt 5822 . . . . . . . . . . . . 13 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) ↔ ∃𝑥𝐴 𝑤 = -𝐵))
4644, 45ax-mp 5 . . . . . . . . . . . 12 (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) ↔ ∃𝑥𝐴 𝑤 = -𝐵)
4746biimpi 218 . . . . . . . . . . 11 (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) → ∃𝑥𝐴 𝑤 = -𝐵)
4847adantl 484 . . . . . . . . . 10 ((𝜑𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)) → ∃𝑥𝐴 𝑤 = -𝐵)
4918, 23nfel 2992 . . . . . . . . . . . . 13 𝑥 𝑤 ∈ ℝ
5049, 22nfan 1896 . . . . . . . . . . . 12 𝑥(𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵))
51 simp3 1134 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → 𝑤 = -𝐵)
523renegcld 11061 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
53523adant3 1128 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝐵 ∈ ℝ)
5451, 53eqeltrd 2913 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑤 = -𝐵) → 𝑤 ∈ ℝ)
55 simp2 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑤 = -𝐵) → 𝑥𝐴)
5651negeqd 10874 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 = --𝐵)
573recnd 10663 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
5857negnegd 10982 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → --𝐵 = 𝐵)
59583adant3 1128 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴𝑤 = -𝐵) → --𝐵 = 𝐵)
6056, 59eqtrd 2856 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 = 𝐵)
61 rspe 3304 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ∧ -𝑤 = 𝐵) → ∃𝑥𝐴 -𝑤 = 𝐵)
6255, 60, 61syl2anc 586 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → ∃𝑥𝐴 -𝑤 = 𝐵)
6314a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 ∈ V)
642, 62, 63elrnmptd 41433 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑤 = -𝐵) → -𝑤 ∈ ran (𝑥𝐴𝐵))
6554, 64jca 514 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑤 = -𝐵) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
66653exp 1115 . . . . . . . . . . . 12 (𝜑 → (𝑥𝐴 → (𝑤 = -𝐵 → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))))
671, 50, 66rexlimd 3317 . . . . . . . . . . 11 (𝜑 → (∃𝑥𝐴 𝑤 = -𝐵 → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵))))
6867imp 409 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑥𝐴 𝑤 = -𝐵) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
6948, 68syldan 593 . . . . . . . . 9 ((𝜑𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)) → (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
70 rabid 3378 . . . . . . . . 9 (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ (𝑤 ∈ ℝ ∧ -𝑤 ∈ ran (𝑥𝐴𝐵)))
7169, 70sylibr 236 . . . . . . . 8 ((𝜑𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)})
7271ex 415 . . . . . . 7 (𝜑 → (𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵) → 𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}))
7343, 72impbid 214 . . . . . 6 (𝜑 → (𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
7473alrimiv 1924 . . . . 5 (𝜑 → ∀𝑤(𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
75 nfrab1 3384 . . . . . 6 𝑤{𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}
76 nfcv 2977 . . . . . 6 𝑤ran (𝑥𝐴 ↦ -𝐵)
7775, 76cleqf 3010 . . . . 5 ({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝐵) ↔ ∀𝑤(𝑤 ∈ {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} ↔ 𝑤 ∈ ran (𝑥𝐴 ↦ -𝐵)))
7874, 77sylibr 236 . . . 4 (𝜑 → {𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝐵))
7978supeq1d 8904 . . 3 (𝜑 → sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
8079negeqd 10874 . 2 (𝜑 → -sup({𝑤 ∈ ℝ ∣ -𝑤 ∈ ran (𝑥𝐴𝐵)}, ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
81 eqidd 2822 . 2 (𝜑 → -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
8210, 80, 813eqtrd 2860 1 (𝜑 → inf(ran (𝑥𝐴𝐵), ℝ, < ) = -sup(ran (𝑥𝐴 ↦ -𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1531   = wceq 1533  wnf 1780  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290   class class class wbr 5058  cmpt 5138  ran crn 5550  supcsup 8898  infcinf 8899  cr 10530   < clt 10669  cle 10670  -cneg 10865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867
This theorem is referenced by:  smfinflem  43085
  Copyright terms: Public domain W3C validator