MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpr Structured version   Visualization version   GIF version

Theorem infpr 8959
Description: The infimum of a pair. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
infpr ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → inf({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐵𝑅𝐶, 𝐵, 𝐶))

Proof of Theorem infpr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1131 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → 𝑅 Or 𝐴)
2 ifcl 4509 . . 3 ((𝐵𝐴𝐶𝐴) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝐴)
323adant1 1125 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝐴)
4 ifpr 4621 . . 3 ((𝐵𝐴𝐶𝐴) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ {𝐵, 𝐶})
543adant1 1125 . 2 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ {𝐵, 𝐶})
6 breq2 5061 . . . . . 6 (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐵𝑅𝐵𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
76notbid 320 . . . . 5 (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (¬ 𝐵𝑅𝐵 ↔ ¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
8 breq2 5061 . . . . . 6 (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐵𝑅𝐶𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
98notbid 320 . . . . 5 (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (¬ 𝐵𝑅𝐶 ↔ ¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
10 sonr 5489 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
11103adant3 1127 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐵𝑅𝐵)
1211adantr 483 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵)
13 simpr 487 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ ¬ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐶)
147, 9, 12, 13ifbothda 4502 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
15 breq2 5061 . . . . . 6 (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐶𝑅𝐵𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
1615notbid 320 . . . . 5 (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (¬ 𝐶𝑅𝐵 ↔ ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
17 breq2 5061 . . . . . 6 (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐶𝑅𝐶𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
1817notbid 320 . . . . 5 (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (¬ 𝐶𝑅𝐶 ↔ ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
19 so2nr 5492 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
20193impb 1110 . . . . . . 7 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
21 imnan 402 . . . . . . 7 ((𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵) ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
2220, 21sylibr 236 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → (𝐵𝑅𝐶 → ¬ 𝐶𝑅𝐵))
2322imp 409 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝐵𝑅𝐶) → ¬ 𝐶𝑅𝐵)
24 sonr 5489 . . . . . . 7 ((𝑅 Or 𝐴𝐶𝐴) → ¬ 𝐶𝑅𝐶)
25243adant2 1126 . . . . . 6 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐶𝑅𝐶)
2625adantr 483 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ ¬ 𝐵𝑅𝐶) → ¬ 𝐶𝑅𝐶)
2716, 18, 23, 26ifbothda 4502 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
28 breq1 5060 . . . . . . 7 (𝑦 = 𝐵 → (𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
2928notbid 320 . . . . . 6 (𝑦 = 𝐵 → (¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ ¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
30 breq1 5060 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
3130notbid 320 . . . . . 6 (𝑦 = 𝐶 → (¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
3229, 31ralprg 4624 . . . . 5 ((𝐵𝐴𝐶𝐴) → (∀𝑦 ∈ {𝐵, 𝐶} ¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))))
33323adant1 1125 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → (∀𝑦 ∈ {𝐵, 𝐶} ¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (¬ 𝐵𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ ¬ 𝐶𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))))
3414, 27, 33mpbir2and 711 . . 3 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → ∀𝑦 ∈ {𝐵, 𝐶} ¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
3534r19.21bi 3206 . 2 (((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) ∧ 𝑦 ∈ {𝐵, 𝐶}) → ¬ 𝑦𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
361, 3, 5, 35infmin 8950 1 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → inf({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐵𝑅𝐶, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  ifcif 4465  {cpr 4561   class class class wbr 5057   Or wor 5466  infcinf 8897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-po 5467  df-so 5468  df-cnv 5556  df-iota 6307  df-riota 7106  df-sup 8898  df-inf 8899
This theorem is referenced by:  infsupprpr  8960  infsn  8961  liminf10ex  42044  prproropf1olem2  43656  prproropf1olem3  43657  prproropf1olem4  43658
  Copyright terms: Public domain W3C validator