MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssrlem5 Structured version   Visualization version   GIF version

Theorem infpssrlem5 9081
Description: Lemma for infpssr 9082. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Hypotheses
Ref Expression
infpssrlem.a (𝜑𝐵𝐴)
infpssrlem.c (𝜑𝐹:𝐵1-1-onto𝐴)
infpssrlem.d (𝜑𝐶 ∈ (𝐴𝐵))
infpssrlem.e 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
Assertion
Ref Expression
infpssrlem5 (𝜑 → (𝐴𝑉 → ω ≼ 𝐴))

Proof of Theorem infpssrlem5
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infpssrlem.a . . . 4 (𝜑𝐵𝐴)
2 infpssrlem.c . . . 4 (𝜑𝐹:𝐵1-1-onto𝐴)
3 infpssrlem.d . . . 4 (𝜑𝐶 ∈ (𝐴𝐵))
4 infpssrlem.e . . . 4 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
51, 2, 3, 4infpssrlem3 9079 . . 3 (𝜑𝐺:ω⟶𝐴)
6 simpll 789 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝜑)
7 simplrr 800 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝑐 ∈ ω)
8 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝑏𝑐)
91, 2, 3, 4infpssrlem4 9080 . . . . . . . . . 10 ((𝜑𝑐 ∈ ω ∧ 𝑏𝑐) → (𝐺𝑐) ≠ (𝐺𝑏))
106, 7, 8, 9syl3anc 1323 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → (𝐺𝑐) ≠ (𝐺𝑏))
1110necomd 2845 . . . . . . . 8 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → (𝐺𝑏) ≠ (𝐺𝑐))
12 simpll 789 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝜑)
13 simplrl 799 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝑏 ∈ ω)
14 simpr 477 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝑐𝑏)
151, 2, 3, 4infpssrlem4 9080 . . . . . . . . 9 ((𝜑𝑏 ∈ ω ∧ 𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐))
1612, 13, 14, 15syl3anc 1323 . . . . . . . 8 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐))
1711, 16jaodan 825 . . . . . . 7 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ (𝑏𝑐𝑐𝑏)) → (𝐺𝑏) ≠ (𝐺𝑐))
1817ex 450 . . . . . 6 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝑏𝑐𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐)))
1918necon2bd 2806 . . . . 5 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝐺𝑏) = (𝐺𝑐) → ¬ (𝑏𝑐𝑐𝑏)))
20 nnord 7027 . . . . . . 7 (𝑏 ∈ ω → Ord 𝑏)
21 nnord 7027 . . . . . . 7 (𝑐 ∈ ω → Ord 𝑐)
22 ordtri3 5723 . . . . . . 7 ((Ord 𝑏 ∧ Ord 𝑐) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2320, 21, 22syl2an 494 . . . . . 6 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2423adantl 482 . . . . 5 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2519, 24sylibrd 249 . . . 4 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐))
2625ralrimivva 2966 . . 3 (𝜑 → ∀𝑏 ∈ ω ∀𝑐 ∈ ω ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐))
27 dff13 6472 . . 3 (𝐺:ω–1-1𝐴 ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑏 ∈ ω ∀𝑐 ∈ ω ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐)))
285, 26, 27sylanbrc 697 . 2 (𝜑𝐺:ω–1-1𝐴)
29 f1domg 7927 . 2 (𝐴𝑉 → (𝐺:ω–1-1𝐴 → ω ≼ 𝐴))
3028, 29syl5com 31 1 (𝜑 → (𝐴𝑉 → ω ≼ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  cdif 3556  wss 3559   class class class wbr 4618  ccnv 5078  cres 5081  Ord word 5686  wf 5848  1-1wf1 5849  1-1-ontowf1o 5851  cfv 5852  ωcom 7019  reccrdg 7457  cdom 7905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-dom 7909
This theorem is referenced by:  infpssr  9082
  Copyright terms: Public domain W3C validator