MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infrelb Structured version   Visualization version   GIF version

Theorem infrelb 10855
Description: If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
infrelb ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴)
Distinct variable group:   𝑥,𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem infrelb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp1 1053 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → 𝐵 ⊆ ℝ)
2 ne0i 3879 . . . 4 (𝐴𝐵𝐵 ≠ ∅)
323ad2ant3 1076 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → 𝐵 ≠ ∅)
4 simp2 1054 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦)
5 infrecl 10852 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → inf(𝐵, ℝ, < ) ∈ ℝ)
61, 3, 4, 5syl3anc 1317 . 2 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → inf(𝐵, ℝ, < ) ∈ ℝ)
7 ssel2 3562 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐴𝐵) → 𝐴 ∈ ℝ)
873adant2 1072 . 2 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → 𝐴 ∈ ℝ)
9 ltso 9969 . . . . . . 7 < Or ℝ
109a1i 11 . . . . . 6 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → < Or ℝ)
11 simpll 785 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → 𝐵 ⊆ ℝ)
122adantl 480 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → 𝐵 ≠ ∅)
13 simplr 787 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦)
14 infm3 10831 . . . . . . 7 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
1511, 12, 13, 14syl3anc 1317 . . . . . 6 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))
1610, 15inflb 8255 . . . . 5 (((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) ∧ 𝐴𝐵) → (𝐴𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < )))
1716expcom 449 . . . 4 (𝐴𝐵 → ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → (𝐴𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < ))))
1817pm2.43b 52 . . 3 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦) → (𝐴𝐵 → ¬ 𝐴 < inf(𝐵, ℝ, < )))
19183impia 1252 . 2 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → ¬ 𝐴 < inf(𝐵, ℝ, < ))
206, 8, 19nltled 10038 1 ((𝐵 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑥𝑦𝐴𝐵) → inf(𝐵, ℝ, < ) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1030  wcel 1976  wne 2779  wral 2895  wrex 2896  wss 3539  c0 3873   class class class wbr 4577   Or wor 4948  infcinf 8207  cr 9791   < clt 9930  cle 9931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-sup 8208  df-inf 8209  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120
This theorem is referenced by:  minveclem2  22922  minveclem4  22928  aalioulem2  23809  pilem2  23927  pilem3  23928  pntlem3  25015  minvecolem2  26921  minvecolem4  26926  taupilem2  32148  ptrecube  32382  heicant  32417  pellfundlb  36269  infrefilb  38345  climinf  38477  fourierdlem42  38846
  Copyright terms: Public domain W3C validator