MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infrenegsup Structured version   Visualization version   GIF version

Theorem infrenegsup 10850
Description: The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. The antecedent ensures that 𝐴 is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
infrenegsup ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem infrenegsup
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 infrecl 10849 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ)
21recnd 9921 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℂ)
32negnegd 10231 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → --inf(𝐴, ℝ, < ) = inf(𝐴, ℝ, < ))
4 negeq 10121 . . . . . . . . 9 (𝑤 = 𝑧 → -𝑤 = -𝑧)
54cbvmptv 4669 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑧 ∈ ℝ ↦ -𝑧)
65mptpreima 5528 . . . . . . 7 ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = {𝑧 ∈ ℝ ∣ -𝑧𝐴}
7 eqid 2606 . . . . . . . . . 10 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)
87negiso 10847 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ∧ (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤))
98simpri 476 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)
109imaeq1i 5366 . . . . . . 7 ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴)
116, 10eqtr3i 2630 . . . . . 6 {𝑧 ∈ ℝ ∣ -𝑧𝐴} = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴)
1211supeq1i 8210 . . . . 5 sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < )
138simpli 472 . . . . . . . . 9 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
14 isocnv 6455 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) → (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
1513, 14ax-mp 5 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
16 isoeq1 6442 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤) → ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ↔ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)))
179, 16ax-mp 5 . . . . . . . 8 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ↔ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
1815, 17mpbi 218 . . . . . . 7 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
1918a1i 11 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
20 simp1 1053 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ⊆ ℝ)
21 infm3 10828 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
22 vex 3172 . . . . . . . . . . . 12 𝑥 ∈ V
23 vex 3172 . . . . . . . . . . . 12 𝑦 ∈ V
2422, 23brcnv 5212 . . . . . . . . . . 11 (𝑥 < 𝑦𝑦 < 𝑥)
2524notbii 308 . . . . . . . . . 10 𝑥 < 𝑦 ↔ ¬ 𝑦 < 𝑥)
2625ralbii 2959 . . . . . . . . 9 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑥)
2723, 22brcnv 5212 . . . . . . . . . . 11 (𝑦 < 𝑥𝑥 < 𝑦)
28 vex 3172 . . . . . . . . . . . . 13 𝑧 ∈ V
2923, 28brcnv 5212 . . . . . . . . . . . 12 (𝑦 < 𝑧𝑧 < 𝑦)
3029rexbii 3019 . . . . . . . . . . 11 (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 𝑧 < 𝑦)
3127, 30imbi12i 338 . . . . . . . . . 10 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3231ralbii 2959 . . . . . . . . 9 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3326, 32anbi12i 728 . . . . . . . 8 ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3433rexbii 3019 . . . . . . 7 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3521, 34sylibr 222 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
36 gtso 9967 . . . . . . 7 < Or ℝ
3736a1i 11 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → < Or ℝ)
3819, 20, 35, 37supiso 8238 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )))
3912, 38syl5eq 2652 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )))
40 df-inf 8206 . . . . . . . 8 inf(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )
4140eqcomi 2615 . . . . . . 7 sup(𝐴, ℝ, < ) = inf(𝐴, ℝ, < )
4241fveq2i 6088 . . . . . 6 ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < ))
43 negeq 10121 . . . . . . 7 (𝑤 = inf(𝐴, ℝ, < ) → -𝑤 = -inf(𝐴, ℝ, < ))
44 negex 10127 . . . . . . 7 -inf(𝐴, ℝ, < ) ∈ V
4543, 7, 44fvmpt 6173 . . . . . 6 (inf(𝐴, ℝ, < ) ∈ ℝ → ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
4642, 45syl5eq 2652 . . . . 5 (inf(𝐴, ℝ, < ) ∈ ℝ → ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
471, 46syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
4839, 47eqtr2d 2641 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -inf(𝐴, ℝ, < ) = sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
4948negeqd 10123 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → --inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
503, 49eqtr3d 2642 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2776  wral 2892  wrex 2893  {crab 2896  wss 3536  c0 3870   class class class wbr 4574  cmpt 4634   Or wor 4945  ccnv 5024  cima 5028  cfv 5787   Isom wiso 5788  supcsup 8203  infcinf 8204  cr 9788   < clt 9927  cle 9928  -cneg 10115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866  ax-pre-sup 9867
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-po 4946  df-so 4947  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-sup 8205  df-inf 8206  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117
This theorem is referenced by:  supminf  11604  mbfinf  23152
  Copyright terms: Public domain W3C validator