![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infssd | Structured version Visualization version GIF version |
Description: Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
infssd.0 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infssd.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
infssd.3 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) |
infssd.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
infssd | ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infssd.0 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | infssd.4 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | |
3 | 1, 2 | infcl 8435 | . 2 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
4 | infssd.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | |
5 | 4 | sseld 3635 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵)) |
6 | 1, 2 | inflb 8436 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ 𝐵 → ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅))) |
7 | 5, 6 | syld 47 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐶 → ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅))) |
8 | 7 | ralrimiv 2994 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐶 ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)) |
9 | infssd.3 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) | |
10 | 1, 9 | infnlb 8439 | . 2 ⊢ (𝜑 → ((inf(𝐵, 𝐴, 𝑅) ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐶 ¬ 𝑧𝑅inf(𝐵, 𝐴, 𝑅)) → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅))) |
11 | 3, 8, 10 | mp2and 715 | 1 ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 class class class wbr 4685 Or wor 5063 infcinf 8388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-po 5064 df-so 5065 df-cnv 5151 df-iota 5889 df-riota 6651 df-sup 8389 df-inf 8390 |
This theorem is referenced by: xrge0infssd 29654 |
Copyright terms: Public domain | W3C validator |