MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom1 Structured version   Visualization version   GIF version

Theorem infunsdom1 9629
Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also dominated by 𝑋. This version of infunsdom 9630 assumes additionally that 𝐴 is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)

Proof of Theorem infunsdom1
StepHypRef Expression
1 simprl 769 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐴𝐵)
2 domsdomtr 8646 . . . . 5 ((𝐴𝐵𝐵 ≺ ω) → 𝐴 ≺ ω)
31, 2sylan 582 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → 𝐴 ≺ ω)
4 unfi2 8781 . . . 4 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
53, 4sylancom 590 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
6 simpllr 774 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → ω ≼ 𝑋)
7 sdomdomtr 8644 . . 3 (((𝐴𝐵) ≺ ω ∧ ω ≼ 𝑋) → (𝐴𝐵) ≺ 𝑋)
85, 6, 7syl2anc 586 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ 𝑋)
9 omelon 9103 . . . . . 6 ω ∈ On
10 onenon 9372 . . . . . 6 (ω ∈ On → ω ∈ dom card)
119, 10ax-mp 5 . . . . 5 ω ∈ dom card
12 simpll 765 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝑋 ∈ dom card)
13 sdomdom 8531 . . . . . . 7 (𝐵𝑋𝐵𝑋)
1413ad2antll 727 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐵𝑋)
15 numdom 9458 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐵𝑋) → 𝐵 ∈ dom card)
1612, 14, 15syl2anc 586 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐵 ∈ dom card)
17 domtri2 9412 . . . . 5 ((ω ∈ dom card ∧ 𝐵 ∈ dom card) → (ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω))
1811, 16, 17sylancr 589 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω))
1918biimpar 480 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ¬ 𝐵 ≺ ω) → ω ≼ 𝐵)
20 uncom 4128 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
2116adantr 483 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐵 ∈ dom card)
22 simpr 487 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → ω ≼ 𝐵)
231adantr 483 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐴𝐵)
24 infunabs 9623 . . . . . 6 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐴𝐵) → (𝐵𝐴) ≈ 𝐵)
2521, 22, 23, 24syl3anc 1367 . . . . 5 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐵𝐴) ≈ 𝐵)
2620, 25eqbrtrid 5093 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐴𝐵) ≈ 𝐵)
27 simplrr 776 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐵𝑋)
28 ensdomtr 8647 . . . 4 (((𝐴𝐵) ≈ 𝐵𝐵𝑋) → (𝐴𝐵) ≺ 𝑋)
2926, 27, 28syl2anc 586 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐴𝐵) ≺ 𝑋)
3019, 29syldan 593 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ¬ 𝐵 ≺ ω) → (𝐴𝐵) ≺ 𝑋)
318, 30pm2.61dan 811 1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2110  cun 3933   class class class wbr 5058  dom cdm 5549  Oncon0 6185  ωcom 7574  cen 8500  cdom 8501  csdm 8502  cardccrd 9358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-oi 8968  df-dju 9324  df-card 9362
This theorem is referenced by:  infunsdom  9630
  Copyright terms: Public domain W3C validator