Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infval Structured version   Visualization version   GIF version

Theorem infval 8352
 Description: Alternate expression for the infimum. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infval (𝜑 → inf(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑦,𝑅,𝑧   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜑,𝑥,𝑦,𝑧

Proof of Theorem infval
StepHypRef Expression
1 df-inf 8309 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infexd.1 . . . . 5 (𝜑𝑅 Or 𝐴)
3 cnvso 5643 . . . . 5 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 208 . . . 4 (𝜑𝑅 Or 𝐴)
54supval2 8321 . . 3 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
6 vex 3193 . . . . . . . . 9 𝑥 ∈ V
7 vex 3193 . . . . . . . . 9 𝑦 ∈ V
86, 7brcnv 5275 . . . . . . . 8 (𝑥𝑅𝑦𝑦𝑅𝑥)
98a1i 11 . . . . . . 7 (𝜑 → (𝑥𝑅𝑦𝑦𝑅𝑥))
109notbid 308 . . . . . 6 (𝜑 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
1110ralbidv 2982 . . . . 5 (𝜑 → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
127, 6brcnv 5275 . . . . . . . 8 (𝑦𝑅𝑥𝑥𝑅𝑦)
1312a1i 11 . . . . . . 7 (𝜑 → (𝑦𝑅𝑥𝑥𝑅𝑦))
14 vex 3193 . . . . . . . . . 10 𝑧 ∈ V
157, 14brcnv 5275 . . . . . . . . 9 (𝑦𝑅𝑧𝑧𝑅𝑦)
1615a1i 11 . . . . . . . 8 (𝜑 → (𝑦𝑅𝑧𝑧𝑅𝑦))
1716rexbidv 3047 . . . . . . 7 (𝜑 → (∃𝑧𝐵 𝑦𝑅𝑧 ↔ ∃𝑧𝐵 𝑧𝑅𝑦))
1813, 17imbi12d 334 . . . . . 6 (𝜑 → ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
1918ralbidv 2982 . . . . 5 (𝜑 → (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
2011, 19anbi12d 746 . . . 4 (𝜑 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
2120riotabidv 6578 . . 3 (𝜑 → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
225, 21eqtrd 2655 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
231, 22syl5eq 2667 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480  ∀wral 2908  ∃wrex 2909   class class class wbr 4623   Or wor 5004  ◡ccnv 5083  ℩crio 6575  supcsup 8306  infcinf 8307 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-po 5005  df-so 5006  df-cnv 5092  df-iota 5820  df-riota 6576  df-sup 8308  df-inf 8309 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator