MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxp Structured version   Visualization version   GIF version

Theorem infxp 9631
Description: Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxp (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))

Proof of Theorem infxp
StepHypRef Expression
1 sdomdom 8531 . . 3 (𝐵𝐴𝐵𝐴)
2 infxpabs 9628 . . . . . 6 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ 𝐴)
3 infunabs 9623 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
433expa 1114 . . . . . . . 8 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
54adantrl 714 . . . . . . 7 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴𝐵) ≈ 𝐴)
65ensymd 8554 . . . . . 6 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → 𝐴 ≈ (𝐴𝐵))
7 entr 8555 . . . . . 6 (((𝐴 × 𝐵) ≈ 𝐴𝐴 ≈ (𝐴𝐵)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
82, 6, 7syl2anc 586 . . . . 5 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
98expr 459 . . . 4 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝐵 ≠ ∅) → (𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
109adantrl 714 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
111, 10syl5 34 . 2 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
12 domtri2 9412 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
1312ad2ant2r 745 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
14 xpcomeng 8603 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
1514ad2ant2r 745 . . . . 5 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
16 simplrl 775 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
17 domtr 8556 . . . . . . . 8 ((ω ≼ 𝐴𝐴𝐵) → ω ≼ 𝐵)
1817ad4ant24 752 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → ω ≼ 𝐵)
19 infn0 8774 . . . . . . . 8 (ω ≼ 𝐴𝐴 ≠ ∅)
2019ad3antlr 729 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐴 ≠ ∅)
21 simpr 487 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐴𝐵)
22 infxpabs 9628 . . . . . . 7 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (𝐴 ≠ ∅ ∧ 𝐴𝐵)) → (𝐵 × 𝐴) ≈ 𝐵)
2316, 18, 20, 21, 22syl22anc 836 . . . . . 6 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐵 × 𝐴) ≈ 𝐵)
24 uncom 4129 . . . . . . . 8 (𝐴𝐵) = (𝐵𝐴)
25 infunabs 9623 . . . . . . . . 9 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐴𝐵) → (𝐵𝐴) ≈ 𝐵)
2616, 18, 21, 25syl3anc 1367 . . . . . . . 8 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐵𝐴) ≈ 𝐵)
2724, 26eqbrtrid 5094 . . . . . . 7 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐴𝐵) ≈ 𝐵)
2827ensymd 8554 . . . . . 6 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → 𝐵 ≈ (𝐴𝐵))
29 entr 8555 . . . . . 6 (((𝐵 × 𝐴) ≈ 𝐵𝐵 ≈ (𝐴𝐵)) → (𝐵 × 𝐴) ≈ (𝐴𝐵))
3023, 28, 29syl2anc 586 . . . . 5 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐵 × 𝐴) ≈ (𝐴𝐵))
31 entr 8555 . . . . 5 (((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ≈ (𝐴𝐵)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
3215, 30, 31syl2an2r 683 . . . 4 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) ∧ 𝐴𝐵) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
3332ex 415 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴𝐵 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
3413, 33sylbird 262 . 2 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (¬ 𝐵𝐴 → (𝐴 × 𝐵) ≈ (𝐴𝐵)))
3511, 34pm2.61d 181 1 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2110  wne 3016  cun 3934  c0 4291   class class class wbr 5059   × cxp 5548  dom cdm 5550  ωcom 7574  cen 8500  cdom 8501  csdm 8502  cardccrd 9358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-oi 8968  df-dju 9324  df-card 9362
This theorem is referenced by:  alephmul  9994
  Copyright terms: Public domain W3C validator