 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpen Structured version   Visualization version   GIF version

Theorem infxpen 8693
 Description: Every infinite ordinal is equinumerous to its Cartesian product. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation 𝑅 is a well-ordering of (On × On) with the additional property that 𝑅-initial segments of (𝑥 × 𝑥) (where 𝑥 is a limit ordinal) are of cardinality at most 𝑥. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
infxpen ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)

Proof of Theorem infxpen
Dummy variables 𝑚 𝑎 𝑠 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2605 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
2 eleq1 2671 . . . . 5 (𝑠 = 𝑧 → (𝑠 ∈ (On × On) ↔ 𝑧 ∈ (On × On)))
3 eleq1 2671 . . . . 5 (𝑡 = 𝑤 → (𝑡 ∈ (On × On) ↔ 𝑤 ∈ (On × On)))
42, 3bi2anan9 912 . . . 4 ((𝑠 = 𝑧𝑡 = 𝑤) → ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ↔ (𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On))))
5 fveq2 6084 . . . . . . . 8 (𝑠 = 𝑧 → (1st𝑠) = (1st𝑧))
6 fveq2 6084 . . . . . . . 8 (𝑠 = 𝑧 → (2nd𝑠) = (2nd𝑧))
75, 6uneq12d 3725 . . . . . . 7 (𝑠 = 𝑧 → ((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑧) ∪ (2nd𝑧)))
87adantr 479 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → ((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑧) ∪ (2nd𝑧)))
9 fveq2 6084 . . . . . . . 8 (𝑡 = 𝑤 → (1st𝑡) = (1st𝑤))
10 fveq2 6084 . . . . . . . 8 (𝑡 = 𝑤 → (2nd𝑡) = (2nd𝑤))
119, 10uneq12d 3725 . . . . . . 7 (𝑡 = 𝑤 → ((1st𝑡) ∪ (2nd𝑡)) = ((1st𝑤) ∪ (2nd𝑤)))
1211adantl 480 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → ((1st𝑡) ∪ (2nd𝑡)) = ((1st𝑤) ∪ (2nd𝑤)))
138, 12eleq12d 2677 . . . . 5 ((𝑠 = 𝑧𝑡 = 𝑤) → (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ↔ ((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤))))
147, 11eqeqan12d 2621 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ↔ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
15 breq12 4578 . . . . . 6 ((𝑠 = 𝑧𝑡 = 𝑤) → (𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤))
1614, 15anbi12d 742 . . . . 5 ((𝑠 = 𝑧𝑡 = 𝑤) → ((((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡) ↔ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))
1713, 16orbi12d 741 . . . 4 ((𝑠 = 𝑧𝑡 = 𝑤) → ((((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤))))
184, 17anbi12d 742 . . 3 ((𝑠 = 𝑧𝑡 = 𝑤) → (((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡))) ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))))
1918cbvopabv 4644 . 2 {⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑤)))}
20 eqid 2605 . 2 ({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) = ({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
21 biid 249 . 2 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
22 eqid 2605 . 2 ((1st𝑤) ∪ (2nd𝑤)) = ((1st𝑤) ∪ (2nd𝑤))
23 eqid 2605 . 2 OrdIso(({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))), (𝑎 × 𝑎)) = OrdIso(({⟨𝑠, 𝑡⟩ ∣ ((𝑠 ∈ (On × On) ∧ 𝑡 ∈ (On × On)) ∧ (((1st𝑠) ∪ (2nd𝑠)) ∈ ((1st𝑡) ∪ (2nd𝑡)) ∨ (((1st𝑠) ∪ (2nd𝑠)) = ((1st𝑡) ∪ (2nd𝑡)) ∧ 𝑠{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}𝑡)))} ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))), (𝑎 × 𝑎))
241, 19, 20, 21, 22, 23infxpenlem 8692 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 381   ∧ wa 382   = wceq 1474   ∈ wcel 1975  ∀wral 2891   ∪ cun 3533   ∩ cin 3534   ⊆ wss 3535   class class class wbr 4573  {copab 4632   × cxp 5022  Oncon0 5622  ‘cfv 5786  ωcom 6930  1st c1st 7030  2nd c2nd 7031   ≈ cen 7811   ≺ csdm 7813  OrdIsocoi 8270 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394 This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-oi 8271  df-card 8621 This theorem is referenced by:  xpomen  8694  infxpidm2  8696  alephreg  9256  cfpwsdom  9258  inar1  9449
 Copyright terms: Public domain W3C validator