Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenlem Structured version   Visualization version   GIF version

Theorem infxpenlem 9046
 Description: Lemma for infxpen 9047. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
leweon.1 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
r0weon.1 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
infxpen.1 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
infxpen.2 (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
infxpen.3 𝑀 = ((1st𝑤) ∪ (2nd𝑤))
infxpen.4 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎))
Assertion
Ref Expression
infxpenlem ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
Distinct variable groups:   𝐴,𝑎   𝑤,𝐽   𝑧,𝑤,𝐿   𝑧,𝑚,𝑀   𝜑,𝑤,𝑧   𝑧,𝑄   𝑚,𝑎,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚,𝑎)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑚)   𝑄(𝑥,𝑦,𝑤,𝑚,𝑎)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑚,𝑎)   𝐽(𝑥,𝑦,𝑧,𝑚,𝑎)   𝐿(𝑥,𝑦,𝑚,𝑎)   𝑀(𝑥,𝑦,𝑤,𝑎)

Proof of Theorem infxpenlem
StepHypRef Expression
1 sseq2 3768 . . . 4 (𝑎 = 𝑚 → (ω ⊆ 𝑎 ↔ ω ⊆ 𝑚))
2 xpeq12 5291 . . . . . 6 ((𝑎 = 𝑚𝑎 = 𝑚) → (𝑎 × 𝑎) = (𝑚 × 𝑚))
32anidms 680 . . . . 5 (𝑎 = 𝑚 → (𝑎 × 𝑎) = (𝑚 × 𝑚))
4 id 22 . . . . 5 (𝑎 = 𝑚𝑎 = 𝑚)
53, 4breq12d 4817 . . . 4 (𝑎 = 𝑚 → ((𝑎 × 𝑎) ≈ 𝑎 ↔ (𝑚 × 𝑚) ≈ 𝑚))
61, 5imbi12d 333 . . 3 (𝑎 = 𝑚 → ((ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎) ↔ (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)))
7 sseq2 3768 . . . 4 (𝑎 = 𝐴 → (ω ⊆ 𝑎 ↔ ω ⊆ 𝐴))
8 xpeq12 5291 . . . . . 6 ((𝑎 = 𝐴𝑎 = 𝐴) → (𝑎 × 𝑎) = (𝐴 × 𝐴))
98anidms 680 . . . . 5 (𝑎 = 𝐴 → (𝑎 × 𝑎) = (𝐴 × 𝐴))
10 id 22 . . . . 5 (𝑎 = 𝐴𝑎 = 𝐴)
119, 10breq12d 4817 . . . 4 (𝑎 = 𝐴 → ((𝑎 × 𝑎) ≈ 𝑎 ↔ (𝐴 × 𝐴) ≈ 𝐴))
127, 11imbi12d 333 . . 3 (𝑎 = 𝐴 → ((ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎) ↔ (ω ⊆ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴)))
13 infxpen.2 . . . . . . . 8 (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)))
14 vex 3343 . . . . . . . . . . . . 13 𝑎 ∈ V
1514, 14xpex 7128 . . . . . . . . . . . 12 (𝑎 × 𝑎) ∈ V
16 simpll 807 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ∈ On)
1713, 16sylbi 207 . . . . . . . . . . . . . . . . 17 (𝜑𝑎 ∈ On)
18 onss 7156 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ On → 𝑎 ⊆ On)
1917, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑎 ⊆ On)
20 xpss12 5281 . . . . . . . . . . . . . . . 16 ((𝑎 ⊆ On ∧ 𝑎 ⊆ On) → (𝑎 × 𝑎) ⊆ (On × On))
2119, 19, 20syl2anc 696 . . . . . . . . . . . . . . 15 (𝜑 → (𝑎 × 𝑎) ⊆ (On × On))
22 leweon.1 . . . . . . . . . . . . . . . . 17 𝐿 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st𝑥) ∈ (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) ∈ (2nd𝑦))))}
23 r0weon.1 . . . . . . . . . . . . . . . . 17 𝑅 = {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))}
2422, 23r0weon 9045 . . . . . . . . . . . . . . . 16 (𝑅 We (On × On) ∧ 𝑅 Se (On × On))
2524simpli 476 . . . . . . . . . . . . . . 15 𝑅 We (On × On)
26 wess 5253 . . . . . . . . . . . . . . 15 ((𝑎 × 𝑎) ⊆ (On × On) → (𝑅 We (On × On) → 𝑅 We (𝑎 × 𝑎)))
2721, 25, 26mpisyl 21 . . . . . . . . . . . . . 14 (𝜑𝑅 We (𝑎 × 𝑎))
28 weinxp 5343 . . . . . . . . . . . . . 14 (𝑅 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
2927, 28sylib 208 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
30 infxpen.1 . . . . . . . . . . . . . 14 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
31 weeq1 5254 . . . . . . . . . . . . . 14 (𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) → (𝑄 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎)))
3230, 31ax-mp 5 . . . . . . . . . . . . 13 (𝑄 We (𝑎 × 𝑎) ↔ (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) We (𝑎 × 𝑎))
3329, 32sylibr 224 . . . . . . . . . . . 12 (𝜑𝑄 We (𝑎 × 𝑎))
34 infxpen.4 . . . . . . . . . . . . 13 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎))
3534oiiso 8609 . . . . . . . . . . . 12 (((𝑎 × 𝑎) ∈ V ∧ 𝑄 We (𝑎 × 𝑎)) → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
3615, 33, 35sylancr 698 . . . . . . . . . . 11 (𝜑𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
37 isof1o 6737 . . . . . . . . . . 11 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽:dom 𝐽1-1-onto→(𝑎 × 𝑎))
38 f1ocnv 6311 . . . . . . . . . . 11 (𝐽:dom 𝐽1-1-onto→(𝑎 × 𝑎) → 𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽)
39 f1of1 6298 . . . . . . . . . . 11 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
4036, 37, 38, 394syl 19 . . . . . . . . . 10 (𝜑𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
41 f1f1orn 6310 . . . . . . . . . 10 (𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽𝐽:(𝑎 × 𝑎)–1-1-onto→ran 𝐽)
4215f1oen 8144 . . . . . . . . . 10 (𝐽:(𝑎 × 𝑎)–1-1-onto→ran 𝐽 → (𝑎 × 𝑎) ≈ ran 𝐽)
4340, 41, 423syl 18 . . . . . . . . 9 (𝜑 → (𝑎 × 𝑎) ≈ ran 𝐽)
44 f1ofn 6300 . . . . . . . . . . 11 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽 Fn (𝑎 × 𝑎))
4536, 37, 38, 444syl 19 . . . . . . . . . 10 (𝜑𝐽 Fn (𝑎 × 𝑎))
4636adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)))
4737, 38, 393syl 18 . . . . . . . . . . . . . . . . . 18 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽)
48 cnvimass 5643 . . . . . . . . . . . . . . . . . . 19 (𝑄 “ {𝑤}) ⊆ dom 𝑄
49 inss2 3977 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎))
5030, 49eqsstri 3776 . . . . . . . . . . . . . . . . . . . . 21 𝑄 ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎))
51 dmss 5478 . . . . . . . . . . . . . . . . . . . . 21 (𝑄 ⊆ ((𝑎 × 𝑎) × (𝑎 × 𝑎)) → dom 𝑄 ⊆ dom ((𝑎 × 𝑎) × (𝑎 × 𝑎)))
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 dom 𝑄 ⊆ dom ((𝑎 × 𝑎) × (𝑎 × 𝑎))
53 dmxpid 5500 . . . . . . . . . . . . . . . . . . . 20 dom ((𝑎 × 𝑎) × (𝑎 × 𝑎)) = (𝑎 × 𝑎)
5452, 53sseqtri 3778 . . . . . . . . . . . . . . . . . . 19 dom 𝑄 ⊆ (𝑎 × 𝑎)
5548, 54sstri 3753 . . . . . . . . . . . . . . . . . 18 (𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎)
56 f1ores 6313 . . . . . . . . . . . . . . . . . 18 ((𝐽:(𝑎 × 𝑎)–1-1→dom 𝐽 ∧ (𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎)) → (𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})))
5747, 55, 56sylancl 697 . . . . . . . . . . . . . . . . 17 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → (𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})))
5815, 15xpex 7128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 × 𝑎) × (𝑎 × 𝑎)) ∈ V
5958inex2 4952 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) ∈ V
6030, 59eqeltri 2835 . . . . . . . . . . . . . . . . . . . 20 𝑄 ∈ V
6160cnvex 7279 . . . . . . . . . . . . . . . . . . 19 𝑄 ∈ V
6261imaex 7270 . . . . . . . . . . . . . . . . . 18 (𝑄 “ {𝑤}) ∈ V
6362f1oen 8144 . . . . . . . . . . . . . . . . 17 ((𝐽 ↾ (𝑄 “ {𝑤})):(𝑄 “ {𝑤})–1-1-onto→(𝐽 “ (𝑄 “ {𝑤})) → (𝑄 “ {𝑤}) ≈ (𝐽 “ (𝑄 “ {𝑤})))
6446, 57, 633syl 18 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≈ (𝐽 “ (𝑄 “ {𝑤})))
65 sseqin2 3960 . . . . . . . . . . . . . . . . . . 19 ((𝑄 “ {𝑤}) ⊆ (𝑎 × 𝑎) ↔ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤})) = (𝑄 “ {𝑤}))
6655, 65mpbi 220 . . . . . . . . . . . . . . . . . 18 ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤})) = (𝑄 “ {𝑤})
6766imaeq2i 5622 . . . . . . . . . . . . . . . . 17 (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (𝐽 “ (𝑄 “ {𝑤}))
68 isocnv 6744 . . . . . . . . . . . . . . . . . . . 20 (𝐽 Isom E , 𝑄 (dom 𝐽, (𝑎 × 𝑎)) → 𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽))
6946, 68syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽))
70 simpr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑤 ∈ (𝑎 × 𝑎))
71 isoini 6752 . . . . . . . . . . . . . . . . . . 19 ((𝐽 Isom 𝑄, E ((𝑎 × 𝑎), dom 𝐽) ∧ 𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})))
7269, 70, 71syl2anc 696 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})))
73 fvex 6363 . . . . . . . . . . . . . . . . . . . . 21 (𝐽𝑤) ∈ V
7473epini 5653 . . . . . . . . . . . . . . . . . . . 20 ( E “ {(𝐽𝑤)}) = (𝐽𝑤)
7574ineq2i 3954 . . . . . . . . . . . . . . . . . . 19 (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})) = (dom 𝐽 ∩ (𝐽𝑤))
7634oicl 8601 . . . . . . . . . . . . . . . . . . . . 21 Ord dom 𝐽
77 f1of 6299 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽:(𝑎 × 𝑎)–1-1-onto→dom 𝐽𝐽:(𝑎 × 𝑎)⟶dom 𝐽)
7836, 37, 38, 774syl 19 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐽:(𝑎 × 𝑎)⟶dom 𝐽)
7978ffvelrnda 6523 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ dom 𝐽)
80 ordelss 5900 . . . . . . . . . . . . . . . . . . . . 21 ((Ord dom 𝐽 ∧ (𝐽𝑤) ∈ dom 𝐽) → (𝐽𝑤) ⊆ dom 𝐽)
8176, 79, 80sylancr 698 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ⊆ dom 𝐽)
82 sseqin2 3960 . . . . . . . . . . . . . . . . . . . 20 ((𝐽𝑤) ⊆ dom 𝐽 ↔ (dom 𝐽 ∩ (𝐽𝑤)) = (𝐽𝑤))
8381, 82sylib 208 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (dom 𝐽 ∩ (𝐽𝑤)) = (𝐽𝑤))
8475, 83syl5eq 2806 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (dom 𝐽 ∩ ( E “ {(𝐽𝑤)})) = (𝐽𝑤))
8572, 84eqtrd 2794 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ ((𝑎 × 𝑎) ∩ (𝑄 “ {𝑤}))) = (𝐽𝑤))
8667, 85syl5eqr 2808 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽 “ (𝑄 “ {𝑤})) = (𝐽𝑤))
8764, 86breqtrd 4830 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≈ (𝐽𝑤))
8887ensymd 8174 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ≈ (𝑄 “ {𝑤}))
89 infxpen.3 . . . . . . . . . . . . . . . . . . 19 𝑀 = ((1st𝑤) ∪ (2nd𝑤))
90 fvex 6363 . . . . . . . . . . . . . . . . . . . 20 (1st𝑤) ∈ V
91 fvex 6363 . . . . . . . . . . . . . . . . . . . 20 (2nd𝑤) ∈ V
9290, 91unex 7122 . . . . . . . . . . . . . . . . . . 19 ((1st𝑤) ∪ (2nd𝑤)) ∈ V
9389, 92eqeltri 2835 . . . . . . . . . . . . . . . . . 18 𝑀 ∈ V
9493sucex 7177 . . . . . . . . . . . . . . . . 17 suc 𝑀 ∈ V
9594, 94xpex 7128 . . . . . . . . . . . . . . . 16 (suc 𝑀 × suc 𝑀) ∈ V
96 xpss 5282 . . . . . . . . . . . . . . . . . . . 20 (𝑎 × 𝑎) ⊆ (V × V)
97 simp3 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (𝑄 “ {𝑤}))
98 vex 3343 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤 ∈ V
99 vex 3343 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑧 ∈ V
10099eliniseg 5652 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ V → (𝑧 ∈ (𝑄 “ {𝑤}) ↔ 𝑧𝑄𝑤))
10198, 100ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑄 “ {𝑤}) ↔ 𝑧𝑄𝑤)
10297, 101sylib 208 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧𝑄𝑤)
10330breqi 4810 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑄𝑤𝑧(𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))𝑤)
104 brin 4856 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧(𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎)))𝑤 ↔ (𝑧𝑅𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤))
105103, 104bitri 264 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑄𝑤 ↔ (𝑧𝑅𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤))
106105simprbi 483 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑄𝑤𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤)
107 brxp 5304 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤 ↔ (𝑧 ∈ (𝑎 × 𝑎) ∧ 𝑤 ∈ (𝑎 × 𝑎)))
108107simplbi 478 . . . . . . . . . . . . . . . . . . . . 21 (𝑧((𝑎 × 𝑎) × (𝑎 × 𝑎))𝑤𝑧 ∈ (𝑎 × 𝑎))
109102, 106, 1083syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (𝑎 × 𝑎))
11096, 109sseldi 3742 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (V × V))
11117adantr 472 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑎 ∈ On)
1121113adant3 1127 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑎 ∈ On)
113 xp1st 7366 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑎 × 𝑎) → (1st𝑧) ∈ 𝑎)
114 onelon 5909 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (1st𝑧) ∈ 𝑎) → (1st𝑧) ∈ On)
115113, 114sylan2 492 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ On ∧ 𝑧 ∈ (𝑎 × 𝑎)) → (1st𝑧) ∈ On)
116112, 109, 115syl2anc 696 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ∈ On)
117 eloni 5894 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 ∈ On → Ord 𝑎)
118 elxp7 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ (𝑎 × 𝑎) ↔ (𝑤 ∈ (V × V) ∧ ((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎)))
119118simprbi 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 ∈ (𝑎 × 𝑎) → ((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎))
120 ordunel 7193 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Ord 𝑎 ∧ (1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎)
1211203expib 1117 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Ord 𝑎 → (((1st𝑤) ∈ 𝑎 ∧ (2nd𝑤) ∈ 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎))
122117, 119, 121syl2im 40 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ On → (𝑤 ∈ (𝑎 × 𝑎) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎))
123111, 70, 122sylc 65 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((1st𝑤) ∪ (2nd𝑤)) ∈ 𝑎)
12489, 123syl5eqel 2843 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑀𝑎)
125 simprr 813 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 𝑚𝑎)
12613, 125sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ∀𝑚𝑎 𝑚𝑎)
127 simprl 811 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ω ⊆ 𝑎)
12813, 127sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ω ⊆ 𝑎)
129 iscard 9011 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘𝑎) = 𝑎 ↔ (𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎))
130 cardlim 9008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (ω ⊆ (card‘𝑎) ↔ Lim (card‘𝑎))
131 sseq2 3768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((card‘𝑎) = 𝑎 → (ω ⊆ (card‘𝑎) ↔ ω ⊆ 𝑎))
132 limeq 5896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((card‘𝑎) = 𝑎 → (Lim (card‘𝑎) ↔ Lim 𝑎))
133131, 132bibi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((card‘𝑎) = 𝑎 → ((ω ⊆ (card‘𝑎) ↔ Lim (card‘𝑎)) ↔ (ω ⊆ 𝑎 ↔ Lim 𝑎)))
134130, 133mpbii 223 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((card‘𝑎) = 𝑎 → (ω ⊆ 𝑎 ↔ Lim 𝑎))
135129, 134sylbir 225 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) → (ω ⊆ 𝑎 ↔ Lim 𝑎))
136135biimpa 502 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) ∧ ω ⊆ 𝑎) → Lim 𝑎)
13717, 126, 128, 136syl21anc 1476 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Lim 𝑎)
138137adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → Lim 𝑎)
139 limsuc 7215 . . . . . . . . . . . . . . . . . . . . . . . 24 (Lim 𝑎 → (𝑀𝑎 ↔ suc 𝑀𝑎))
140138, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑀𝑎 ↔ suc 𝑀𝑎))
141124, 140mpbid 222 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀𝑎)
142 onelon 5909 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ suc 𝑀𝑎) → suc 𝑀 ∈ On)
14317, 141, 142syl2an2r 911 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀 ∈ On)
1441433adant3 1127 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → suc 𝑀 ∈ On)
145 ssun1 3919 . . . . . . . . . . . . . . . . . . . . 21 (1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧))
146145a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)))
147105simplbi 478 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑄𝑤𝑧𝑅𝑤)
148 df-br 4805 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧𝑅𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ 𝑅)
14923eleq2i 2831 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑧, 𝑤⟩ ∈ 𝑅 ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))})
150 opabid 5132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))} ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
151148, 149, 1503bitri 286 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧𝑅𝑤 ↔ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤))))
152151simprbi 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧𝑅𝑤 → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)))
153 simpl 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤) → ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)))
154153orim2i 541 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ (((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤)) ∧ 𝑧𝐿𝑤)) → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
155152, 154syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧𝑅𝑤 → (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
156 fvex 6363 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1st𝑧) ∈ V
157 fvex 6363 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2nd𝑧) ∈ V
158156, 157unex 7122 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑧) ∪ (2nd𝑧)) ∈ V
159158elsuc 5955 . . . . . . . . . . . . . . . . . . . . . . 23 (((1st𝑧) ∪ (2nd𝑧)) ∈ suc ((1st𝑤) ∪ (2nd𝑤)) ↔ (((1st𝑧) ∪ (2nd𝑧)) ∈ ((1st𝑤) ∪ (2nd𝑤)) ∨ ((1st𝑧) ∪ (2nd𝑧)) = ((1st𝑤) ∪ (2nd𝑤))))
160155, 159sylibr 224 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧𝑅𝑤 → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc ((1st𝑤) ∪ (2nd𝑤)))
161 suceq 5951 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = ((1st𝑤) ∪ (2nd𝑤)) → suc 𝑀 = suc ((1st𝑤) ∪ (2nd𝑤)))
16289, 161ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑀 = suc ((1st𝑤) ∪ (2nd𝑤))
163160, 162syl6eleqr 2850 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑅𝑤 → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)
164102, 147, 1633syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)
165 ontr2 5933 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑧) ∈ On ∧ suc 𝑀 ∈ On) → (((1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀) → (1st𝑧) ∈ suc 𝑀))
166165imp 444 . . . . . . . . . . . . . . . . . . . 20 ((((1st𝑧) ∈ On ∧ suc 𝑀 ∈ On) ∧ ((1st𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)) → (1st𝑧) ∈ suc 𝑀)
167116, 144, 146, 164, 166syl22anc 1478 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (1st𝑧) ∈ suc 𝑀)
168 xp2nd 7367 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝑎 × 𝑎) → (2nd𝑧) ∈ 𝑎)
169 onelon 5909 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (2nd𝑧) ∈ 𝑎) → (2nd𝑧) ∈ On)
170168, 169sylan2 492 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ On ∧ 𝑧 ∈ (𝑎 × 𝑎)) → (2nd𝑧) ∈ On)
171112, 109, 170syl2anc 696 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ∈ On)
172 ssun2 3920 . . . . . . . . . . . . . . . . . . . . 21 (2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧))
173172a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)))
174 ontr2 5933 . . . . . . . . . . . . . . . . . . . . 21 (((2nd𝑧) ∈ On ∧ suc 𝑀 ∈ On) → (((2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀) → (2nd𝑧) ∈ suc 𝑀))
175174imp 444 . . . . . . . . . . . . . . . . . . . 20 ((((2nd𝑧) ∈ On ∧ suc 𝑀 ∈ On) ∧ ((2nd𝑧) ⊆ ((1st𝑧) ∪ (2nd𝑧)) ∧ ((1st𝑧) ∪ (2nd𝑧)) ∈ suc 𝑀)) → (2nd𝑧) ∈ suc 𝑀)
176171, 144, 173, 164, 175syl22anc 1478 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → (2nd𝑧) ∈ suc 𝑀)
177 elxp7 7369 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (suc 𝑀 × suc 𝑀) ↔ (𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ suc 𝑀 ∧ (2nd𝑧) ∈ suc 𝑀)))
178177biimpri 218 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (V × V) ∧ ((1st𝑧) ∈ suc 𝑀 ∧ (2nd𝑧) ∈ suc 𝑀)) → 𝑧 ∈ (suc 𝑀 × suc 𝑀))
179110, 167, 176, 178syl12anc 1475 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎) ∧ 𝑧 ∈ (𝑄 “ {𝑤})) → 𝑧 ∈ (suc 𝑀 × suc 𝑀))
1801793expia 1115 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑧 ∈ (𝑄 “ {𝑤}) → 𝑧 ∈ (suc 𝑀 × suc 𝑀)))
181180ssrdv 3750 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ⊆ (suc 𝑀 × suc 𝑀))
182 ssdomg 8169 . . . . . . . . . . . . . . . 16 ((suc 𝑀 × suc 𝑀) ∈ V → ((𝑄 “ {𝑤}) ⊆ (suc 𝑀 × suc 𝑀) → (𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀)))
18395, 181, 182mpsyl 68 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀))
184128adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ω ⊆ 𝑎)
185 nnfi 8320 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑀 ∈ ω → suc 𝑀 ∈ Fin)
186 xpfi 8398 . . . . . . . . . . . . . . . . . . . . . 22 ((suc 𝑀 ∈ Fin ∧ suc 𝑀 ∈ Fin) → (suc 𝑀 × suc 𝑀) ∈ Fin)
187186anidms 680 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑀 ∈ Fin → (suc 𝑀 × suc 𝑀) ∈ Fin)
188 isfinite 8724 . . . . . . . . . . . . . . . . . . . . 21 ((suc 𝑀 × suc 𝑀) ∈ Fin ↔ (suc 𝑀 × suc 𝑀) ≺ ω)
189187, 188sylib 208 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑀 ∈ Fin → (suc 𝑀 × suc 𝑀) ≺ ω)
190185, 189syl 17 . . . . . . . . . . . . . . . . . . 19 (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ ω)
191 ssdomg 8169 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ V → (ω ⊆ 𝑎 → ω ≼ 𝑎))
19214, 191ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (ω ⊆ 𝑎 → ω ≼ 𝑎)
193 sdomdomtr 8260 . . . . . . . . . . . . . . . . . . 19 (((suc 𝑀 × suc 𝑀) ≺ ω ∧ ω ≼ 𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
194190, 192, 193syl2an 495 . . . . . . . . . . . . . . . . . 18 ((suc 𝑀 ∈ ω ∧ ω ⊆ 𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
195194expcom 450 . . . . . . . . . . . . . . . . 17 (ω ⊆ 𝑎 → (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
196184, 195syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
197 breq1 4807 . . . . . . . . . . . . . . . . . 18 (𝑚 = suc 𝑀 → (𝑚𝑎 ↔ suc 𝑀𝑎))
198126adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ∀𝑚𝑎 𝑚𝑎)
199197, 198, 141rspcdva 3455 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → suc 𝑀𝑎)
200 omelon 8718 . . . . . . . . . . . . . . . . . . 19 ω ∈ On
201 ontri1 5918 . . . . . . . . . . . . . . . . . . 19 ((ω ∈ On ∧ suc 𝑀 ∈ On) → (ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω))
202200, 143, 201sylancr 698 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (ω ⊆ suc 𝑀 ↔ ¬ suc 𝑀 ∈ ω))
203 sseq2 3768 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = suc 𝑀 → (ω ⊆ 𝑚 ↔ ω ⊆ suc 𝑀))
204 xpeq12 5291 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = suc 𝑀𝑚 = suc 𝑀) → (𝑚 × 𝑚) = (suc 𝑀 × suc 𝑀))
205204anidms 680 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = suc 𝑀 → (𝑚 × 𝑚) = (suc 𝑀 × suc 𝑀))
206 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = suc 𝑀𝑚 = suc 𝑀)
207205, 206breq12d 4817 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = suc 𝑀 → ((𝑚 × 𝑚) ≈ 𝑚 ↔ (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
208203, 207imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑚 = suc 𝑀 → ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ↔ (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀)))
209 simplr 809 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
21013, 209sylbi 207 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
211210adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
212208, 211, 141rspcdva 3455 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (ω ⊆ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
213202, 212sylbird 250 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (¬ suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≈ suc 𝑀))
214 ensdomtr 8263 . . . . . . . . . . . . . . . . . 18 (((suc 𝑀 × suc 𝑀) ≈ suc 𝑀 ∧ suc 𝑀𝑎) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
215214expcom 450 . . . . . . . . . . . . . . . . 17 (suc 𝑀𝑎 → ((suc 𝑀 × suc 𝑀) ≈ suc 𝑀 → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
216199, 213, 215sylsyld 61 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (¬ suc 𝑀 ∈ ω → (suc 𝑀 × suc 𝑀) ≺ 𝑎))
217196, 216pm2.61d 170 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (suc 𝑀 × suc 𝑀) ≺ 𝑎)
218 domsdomtr 8262 . . . . . . . . . . . . . . 15 (((𝑄 “ {𝑤}) ≼ (suc 𝑀 × suc 𝑀) ∧ (suc 𝑀 × suc 𝑀) ≺ 𝑎) → (𝑄 “ {𝑤}) ≺ 𝑎)
219183, 217, 218syl2anc 696 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝑄 “ {𝑤}) ≺ 𝑎)
220 ensdomtr 8263 . . . . . . . . . . . . . 14 (((𝐽𝑤) ≈ (𝑄 “ {𝑤}) ∧ (𝑄 “ {𝑤}) ≺ 𝑎) → (𝐽𝑤) ≺ 𝑎)
22188, 219, 220syl2anc 696 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ≺ 𝑎)
222 ordelon 5908 . . . . . . . . . . . . . . 15 ((Ord dom 𝐽 ∧ (𝐽𝑤) ∈ dom 𝐽) → (𝐽𝑤) ∈ On)
22376, 79, 222sylancr 698 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ On)
224 onenon 8985 . . . . . . . . . . . . . . 15 (𝑎 ∈ On → 𝑎 ∈ dom card)
225111, 224syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → 𝑎 ∈ dom card)
226 cardsdomel 9010 . . . . . . . . . . . . . 14 (((𝐽𝑤) ∈ On ∧ 𝑎 ∈ dom card) → ((𝐽𝑤) ≺ 𝑎 ↔ (𝐽𝑤) ∈ (card‘𝑎)))
227223, 225, 226syl2anc 696 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((𝐽𝑤) ≺ 𝑎 ↔ (𝐽𝑤) ∈ (card‘𝑎)))
228221, 227mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ (card‘𝑎))
229 eleq2 2828 . . . . . . . . . . . . . 14 ((card‘𝑎) = 𝑎 → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
230129, 229sylbir 225 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ ∀𝑚𝑎 𝑚𝑎) → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
23117, 198, 230syl2an2r 911 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → ((𝐽𝑤) ∈ (card‘𝑎) ↔ (𝐽𝑤) ∈ 𝑎))
232228, 231mpbid 222 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (𝑎 × 𝑎)) → (𝐽𝑤) ∈ 𝑎)
233232ralrimiva 3104 . . . . . . . . . 10 (𝜑 → ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎)
234 fnfvrnss 6554 . . . . . . . . . . 11 ((𝐽 Fn (𝑎 × 𝑎) ∧ ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎) → ran 𝐽𝑎)
235 ssdomg 8169 . . . . . . . . . . 11 (𝑎 ∈ V → (ran 𝐽𝑎 → ran 𝐽𝑎))
23614, 234, 235mpsyl 68 . . . . . . . . . 10 ((𝐽 Fn (𝑎 × 𝑎) ∧ ∀𝑤 ∈ (𝑎 × 𝑎)(𝐽𝑤) ∈ 𝑎) → ran 𝐽𝑎)
23745, 233, 236syl2anc 696 . . . . . . . . 9 (𝜑 → ran 𝐽𝑎)
238 endomtr 8181 . . . . . . . . 9 (((𝑎 × 𝑎) ≈ ran 𝐽 ∧ ran 𝐽𝑎) → (𝑎 × 𝑎) ≼ 𝑎)
23943, 237, 238syl2anc 696 . . . . . . . 8 (𝜑 → (𝑎 × 𝑎) ≼ 𝑎)
24013, 239sylbir 225 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≼ 𝑎)
241 df1o2 7743 . . . . . . . . . . . 12 1𝑜 = {∅}
242 1onn 7890 . . . . . . . . . . . 12 1𝑜 ∈ ω
243241, 242eqeltrri 2836 . . . . . . . . . . 11 {∅} ∈ ω
244 nnsdom 8726 . . . . . . . . . . 11 ({∅} ∈ ω → {∅} ≺ ω)
245 sdomdom 8151 . . . . . . . . . . 11 ({∅} ≺ ω → {∅} ≼ ω)
246243, 244, 245mp2b 10 . . . . . . . . . 10 {∅} ≼ ω
247 domtr 8176 . . . . . . . . . 10 (({∅} ≼ ω ∧ ω ≼ 𝑎) → {∅} ≼ 𝑎)
248246, 192, 247sylancr 698 . . . . . . . . 9 (ω ⊆ 𝑎 → {∅} ≼ 𝑎)
249 0ex 4942 . . . . . . . . . . . 12 ∅ ∈ V
25014, 249xpsnen 8211 . . . . . . . . . . 11 (𝑎 × {∅}) ≈ 𝑎
251250ensymi 8173 . . . . . . . . . 10 𝑎 ≈ (𝑎 × {∅})
25214xpdom2 8222 . . . . . . . . . 10 ({∅} ≼ 𝑎 → (𝑎 × {∅}) ≼ (𝑎 × 𝑎))
253 endomtr 8181 . . . . . . . . . 10 ((𝑎 ≈ (𝑎 × {∅}) ∧ (𝑎 × {∅}) ≼ (𝑎 × 𝑎)) → 𝑎 ≼ (𝑎 × 𝑎))
254251, 252, 253sylancr 698 . . . . . . . . 9 ({∅} ≼ 𝑎𝑎 ≼ (𝑎 × 𝑎))
255248, 254syl 17 . . . . . . . 8 (ω ⊆ 𝑎𝑎 ≼ (𝑎 × 𝑎))
256255ad2antrl 766 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ≼ (𝑎 × 𝑎))
257 sbth 8247 . . . . . . 7 (((𝑎 × 𝑎) ≼ 𝑎𝑎 ≼ (𝑎 × 𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
258240, 256, 257syl2anc 696 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
259258expr 644 . . . . 5 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (∀𝑚𝑎 𝑚𝑎 → (𝑎 × 𝑎) ≈ 𝑎))
260 simplr 809 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚))
261 simpll 807 . . . . . . . . 9 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → 𝑎 ∈ On)
262 simprr 813 . . . . . . . . 9 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ¬ ∀𝑚𝑎 𝑚𝑎)
263 rexnal 3133 . . . . . . . . . 10 (∃𝑚𝑎 ¬ 𝑚𝑎 ↔ ¬ ∀𝑚𝑎 𝑚𝑎)
264 onelss 5927 . . . . . . . . . . . . 13 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
265 ssdomg 8169 . . . . . . . . . . . . 13 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
266264, 265syld 47 . . . . . . . . . . . 12 (𝑎 ∈ On → (𝑚𝑎𝑚𝑎))
267 bren2 8154 . . . . . . . . . . . . 13 (𝑚𝑎 ↔ (𝑚𝑎 ∧ ¬ 𝑚𝑎))
268267simplbi2 656 . . . . . . . . . . . 12 (𝑚𝑎 → (¬ 𝑚𝑎𝑚𝑎))
269266, 268syl6 35 . . . . . . . . . . 11 (𝑎 ∈ On → (𝑚𝑎 → (¬ 𝑚𝑎𝑚𝑎)))
270269reximdvai 3153 . . . . . . . . . 10 (𝑎 ∈ On → (∃𝑚𝑎 ¬ 𝑚𝑎 → ∃𝑚𝑎 𝑚𝑎))
271263, 270syl5bir 233 . . . . . . . . 9 (𝑎 ∈ On → (¬ ∀𝑚𝑎 𝑚𝑎 → ∃𝑚𝑎 𝑚𝑎))
272261, 262, 271sylc 65 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∃𝑚𝑎 𝑚𝑎)
273 r19.29 3210 . . . . . . . 8 ((∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ ∃𝑚𝑎 𝑚𝑎) → ∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎))
274260, 272, 273syl2anc 696 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎))
275 simprl 811 . . . . . . . 8 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → ω ⊆ 𝑎)
276 onelon 5909 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ On ∧ 𝑚𝑎) → 𝑚 ∈ On)
277 ensym 8172 . . . . . . . . . . . . . . . . . 18 (𝑚𝑎𝑎𝑚)
278 domentr 8182 . . . . . . . . . . . . . . . . . 18 ((ω ≼ 𝑎𝑎𝑚) → ω ≼ 𝑚)
279192, 277, 278syl2an 495 . . . . . . . . . . . . . . . . 17 ((ω ⊆ 𝑎𝑚𝑎) → ω ≼ 𝑚)
280 domnsym 8253 . . . . . . . . . . . . . . . . . . 19 (ω ≼ 𝑚 → ¬ 𝑚 ≺ ω)
281 nnsdom 8726 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ω → 𝑚 ≺ ω)
282280, 281nsyl 135 . . . . . . . . . . . . . . . . . 18 (ω ≼ 𝑚 → ¬ 𝑚 ∈ ω)
283 ontri1 5918 . . . . . . . . . . . . . . . . . . 19 ((ω ∈ On ∧ 𝑚 ∈ On) → (ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω))
284200, 283mpan 708 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ On → (ω ⊆ 𝑚 ↔ ¬ 𝑚 ∈ ω))
285282, 284syl5ibr 236 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ On → (ω ≼ 𝑚 → ω ⊆ 𝑚))
286276, 279, 285syl2im 40 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ On ∧ 𝑚𝑎) → ((ω ⊆ 𝑎𝑚𝑎) → ω ⊆ 𝑚))
287286expd 451 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑚𝑎) → (ω ⊆ 𝑎 → (𝑚𝑎 → ω ⊆ 𝑚)))
288287impcom 445 . . . . . . . . . . . . . 14 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → (𝑚𝑎 → ω ⊆ 𝑚))
289288imim1d 82 . . . . . . . . . . . . 13 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (𝑚𝑎 → (𝑚 × 𝑚) ≈ 𝑚)))
290289imp32 448 . . . . . . . . . . . 12 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → (𝑚 × 𝑚) ≈ 𝑚)
291 entr 8175 . . . . . . . . . . . . . . . 16 (((𝑚 × 𝑚) ≈ 𝑚𝑚𝑎) → (𝑚 × 𝑚) ≈ 𝑎)
292291ancoms 468 . . . . . . . . . . . . . . 15 ((𝑚𝑎 ∧ (𝑚 × 𝑚) ≈ 𝑚) → (𝑚 × 𝑚) ≈ 𝑎)
293 xpen 8290 . . . . . . . . . . . . . . . . 17 ((𝑎𝑚𝑎𝑚) → (𝑎 × 𝑎) ≈ (𝑚 × 𝑚))
294293anidms 680 . . . . . . . . . . . . . . . 16 (𝑎𝑚 → (𝑎 × 𝑎) ≈ (𝑚 × 𝑚))
295 entr 8175 . . . . . . . . . . . . . . . 16 (((𝑎 × 𝑎) ≈ (𝑚 × 𝑚) ∧ (𝑚 × 𝑚) ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
296294, 295sylan 489 . . . . . . . . . . . . . . 15 ((𝑎𝑚 ∧ (𝑚 × 𝑚) ≈ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
297277, 292, 296syl2an2r 911 . . . . . . . . . . . . . 14 ((𝑚𝑎 ∧ (𝑚 × 𝑚) ≈ 𝑚) → (𝑎 × 𝑎) ≈ 𝑎)
298297ex 449 . . . . . . . . . . . . 13 (𝑚𝑎 → ((𝑚 × 𝑚) ≈ 𝑚 → (𝑎 × 𝑎) ≈ 𝑎))
299298ad2antll 767 . . . . . . . . . . . 12 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → ((𝑚 × 𝑚) ≈ 𝑚 → (𝑎 × 𝑎) ≈ 𝑎))
300290, 299mpd 15 . . . . . . . . . . 11 (((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) ∧ ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
301300ex 449 . . . . . . . . . 10 ((ω ⊆ 𝑎 ∧ (𝑎 ∈ On ∧ 𝑚𝑎)) → (((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
302301expr 644 . . . . . . . . 9 ((ω ⊆ 𝑎𝑎 ∈ On) → (𝑚𝑎 → (((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎)))
303302rexlimdv 3168 . . . . . . . 8 ((ω ⊆ 𝑎𝑎 ∈ On) → (∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
304275, 261, 303syl2anc 696 . . . . . . 7 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → (∃𝑚𝑎 ((ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) ∧ 𝑚𝑎) → (𝑎 × 𝑎) ≈ 𝑎))
305274, 304mpd 15 . . . . . 6 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ¬ ∀𝑚𝑎 𝑚𝑎)) → (𝑎 × 𝑎) ≈ 𝑎)
306305expr 644 . . . . 5 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (¬ ∀𝑚𝑎 𝑚𝑎 → (𝑎 × 𝑎) ≈ 𝑎))
307259, 306pm2.61d 170 . . . 4 (((𝑎 ∈ On ∧ ∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ ω ⊆ 𝑎) → (𝑎 × 𝑎) ≈ 𝑎)
308307exp31 631 . . 3 (𝑎 ∈ On → (∀𝑚𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚) → (ω ⊆ 𝑎 → (𝑎 × 𝑎) ≈ 𝑎)))
3096, 12, 308tfis3 7223 . 2 (𝐴 ∈ On → (ω ⊆ 𝐴 → (𝐴 × 𝐴) ≈ 𝐴))
310309imp 444 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  Vcvv 3340   ∪ cun 3713   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  {csn 4321  ⟨cop 4327   class class class wbr 4804  {copab 4864   E cep 5178   Se wse 5223   We wwe 5224   × cxp 5264  ◡ccnv 5265  dom cdm 5266  ran crn 5267   ↾ cres 5268   “ cima 5269  Ord word 5883  Oncon0 5884  Lim wlim 5885  suc csuc 5886   Fn wfn 6044  ⟶wf 6045  –1-1→wf1 6046  –1-1-onto→wf1o 6048  ‘cfv 6049   Isom wiso 6050  ωcom 7231  1st c1st 7332  2nd c2nd 7333  1𝑜c1o 7723   ≈ cen 8120   ≼ cdom 8121   ≺ csdm 8122  Fincfn 8123  OrdIsocoi 8581  cardccrd 8971 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-oi 8582  df-card 8975 This theorem is referenced by:  infxpen  9047
 Copyright terms: Public domain W3C validator